期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm 被引量:1
1
作者 Zong-ping Li Xu-dong Li +5 位作者 Xue-tong Yan Wu Wen Xiao-xin Zeng Rong-jia Zhu Ya-hui Wang Ling-zhi Yi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第7期1597-1609,共13页
Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the... Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance. 展开更多
关键词 Sintering process Proportioning Iron ore Multi-objective beluga whale optimisation algorithm Proportioning cost
原文传递
Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation
2
作者 Abdulrahman M.Abdulghani 《Journal on Artificial Intelligence》 2024年第1期241-259,共19页
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r... Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments. 展开更多
关键词 MAKESPAN multi-objective optimisation task scheduling cloud computing hybrid algorithms
在线阅读 下载PDF
An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms
3
作者 Haojie Yang Xiang Wen Peng Geng 《Journal on Artificial Intelligence》 2024年第1期283-300,共18页
To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisa... To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential. 展开更多
关键词 Mini Batch K-Means simulated annealing algorithm electric vehicle charging stations layout optimisation
在线阅读 下载PDF
Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition
4
作者 Shouyong Jiang Jinglei Guo +1 位作者 Yong Wang Shengxiang Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1973-1986,共14页
Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communicati... Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm. 展开更多
关键词 Bilevel decomposition evolutionary algorithm many-objective optimisation multi-objective optimisation
在线阅读 下载PDF
A low-carbon economic dispatch model for electricity market with wind power based on improved ant-lion optimisation algorithm 被引量:4
5
作者 Renwu Yan Yihan Lin +1 位作者 Ning Yu Yi Wu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期29-39,共11页
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri... Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases. 展开更多
关键词 ant-lion optimisation algorithm carbon trading Levi flight low-carbon economic dispatch wind power market
在线阅读 下载PDF
Bio-Inspired Binary Bees Algorithm for a Two-Level Distribution Optimisation Problem 被引量:1
6
作者 Duc Troung Pham 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期161-167,共7页
Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and fiv... Two uncoupleable distributions, assigning missions to robots and allocating robots to home stations, accompany the use ofmobile service robots in hospitals.In the given problem, two workload-related objectives and five groups of constraints areproposed.A bio-mimicked Binary Bees Algorithm (BBA) is introduced to solve this multiobjective multiconstraint combinatorialoptimisation problem, in which constraint handling technique (Multiobjective Transformation, MOT), multiobjectiveevaluation method (nondominance selection), global search strategy (stochastic search in the variable space), local searchstrategy (Hamming neighbourhood exploitation), and post-processing means (feasibility selection) are the main issues.TheBBA is then demonstrated with a case study, presenting the execution process of the algorithm, and also explaining the change ofelite number in evolutionary process.Its optimisation result provides a group of feasible nondominated two-level distributionschemes. 展开更多
关键词 Binary Bees algorithm bioinspiration two-level distribution combinatorial optimisation multiobjectives MULTI-CONSTRAINTS
在线阅读 下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
7
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION Harris Hawks optimisation algorithm Complete Cross-Validation
在线阅读 下载PDF
A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search for Medical Diagnostics
8
作者 Milan Tair Nebojsa Bacanin +1 位作者 Miodrag Zivkovic K.Venkatachalam 《Computers, Materials & Continua》 SCIE EI 2022年第7期959-982,共24页
There is a growing interest in the study development of artificial intelligence and machine learning,especially regarding the support vector machine pattern classification method.This study proposes an enhanced implem... There is a growing interest in the study development of artificial intelligence and machine learning,especially regarding the support vector machine pattern classification method.This study proposes an enhanced implementation of the well-known whale optimisation algorithm,which combines chaotic and opposition-based learning strategies,which is adopted for hyper-parameter optimisation and feature selection machine learning challenges.The whale optimisation algorithm is a relatively recent addition to the group of swarm intelligence algorithms commonly used for optimisation.The Proposed improved whale optimisation algorithm was first tested for standard unconstrained CEC2017 benchmark suite and it was later adapted for simultaneous feature selection and support vector machine hyper-parameter tuning and validated for medical diagnostics by using breast cancer,diabetes,and erythemato-squamous dataset.The performance of the proposed model is compared with multiple competitive support vector machine models boosted with other metaheuristics,including another improved whale optimisation approach,particle swarm optimisation algorithm,bacterial foraging optimisation algorithms,and genetic algorithms.Results of the simulation show that the proposed model outperforms other competitors concerning the performance of classification and the selected subset feature size. 展开更多
关键词 Whale optimisation algorithm chaotic initialisation oppositionbased learning optimisation DIAGNOSTICS
在线阅读 下载PDF
Reliability Based Multi-Objective Thermodynamic Cycle Optimisation of Turbofan Engines Using Luus-Jaakola Algorithm
9
作者 Vin Cent Tai Yong Chai Tan +3 位作者 Nor Faiza Abd Rahman Yaw Yoong Sia Chan Chin Wang Lip Huat Saw 《Energy Engineering》 EI 2021年第4期1057-1068,共12页
Aircraft engine design is a complicated process,as it involves huge number of components.The design process begins with parametric cycle analysis.It is crucial to determine the optimum values of the cycle parameters t... Aircraft engine design is a complicated process,as it involves huge number of components.The design process begins with parametric cycle analysis.It is crucial to determine the optimum values of the cycle parameters that would give a robust design in the early phase of engine development,to shorten the design cycle for cost saving and man-hour reduction.To obtain a robust solution,optimisation program is often being executed more than once,especially in Reliability Based Design Optimisations(RBDO)with Monte-Carlo Simulation(MCS)scheme for complex systems which require thousands to millions of optimisation loops to be executed.This paper presents a fast heuristic technique to optimise the thermodynamic cycle of two-spool separated flow turbofan engines based on energy and probability of failure criteria based on Luus-Jaakola algorithm(LJ).A computer program called Turbo Jet Engine Optimiser v2.0(TJEO-2.0)has been developed to perform the optimisation calculation.The program is made up of inner and outer loops,where LJ is used in the outer loop to determine the design variables while parametric cycle analysis of the engine is done in the inner loop to determine the engine performance.Latin-Hypercube-Sampling(LHS)technique is used to sample the design and model variations for uncertainty analysis.The results show that optimisation without reliability criteria may lead to high probability of failure of more than 11%on average.The thrust obtained with uncertainty quantification was about 25%higher than the one without uncertainty quantification,at the expense of less than 3%of fuel consumption.The proposed algorithm can solve the turbofan RBDO problem within 3 min. 展开更多
关键词 Multi-objective design optimisation reliability based design optimisation turbofan engines luus-jaakola algorithm
在线阅读 下载PDF
Modeling and Optimisation of Precedence-Constrained Production Sequencing and Scheduling for Multiple Production Lines Using Genetic Algorithms
10
作者 Son Duy Dao Romeo Marian 《Computer Technology and Application》 2011年第6期487-499,共13页
This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The pro... This paper presents an integrated methodology for the modelling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines based on Genetic Algorithms (GA). The problems in this class are NP-hard combinatorial problems, requiring a triple optimisation at the same time: allocation of resources to each line, production sequencing and production scheduling within each production line. They are ubiquitous to production and manufacturing environments. Due to nature of constraints, the length of solutions for the problem can be variable. To cope with this variability, new strategies for encoding chromosomes, crossover and mutation operations have been developed. Robustness of the proposed GA is demonstrated by a complex and realistic case study. 展开更多
关键词 Precedence-constrained sequencing and scheduling optimisation variable-length chromosome genetic algorithm
在线阅读 下载PDF
3D Path Optimisation of Unmanned Aerial Vehicles Using Q Learning-Controlled GWO-AOA
11
作者 K.Sreelakshmy Himanshu Gupta +3 位作者 Om Prakash Verma Kapil Kumar Abdelhamied A.Ateya Naglaa F.Soliman 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2483-2503,共21页
Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedi... Unmanned Aerial Vehicles(UAVs)or drones introduced for military applications are gaining popularity in several other fields as well such as security and surveillance,due to their ability to perform repetitive and tedious tasks in hazardous environments.Their increased demand created the requirement for enabling the UAVs to traverse independently through the Three Dimensional(3D)flight environment consisting of various obstacles which have been efficiently addressed by metaheuristics in past literature.However,not a single optimization algorithms can solve all kind of optimization problem effectively.Therefore,there is dire need to integrate metaheuristic for general acceptability.To address this issue,in this paper,a novel reinforcement learning controlled Grey Wolf Optimisation-Archimedes Optimisation Algorithm(QGA)has been exhaustively introduced and exhaustively validated firstly on 22 benchmark functions and then,utilized to obtain the optimum flyable path without collision for UAVs in three dimensional environment.The performance of the developed QGA has been compared against the various metaheuristics.The simulation experimental results reveal that the QGA algorithm acquire a feasible and effective flyable path more efficiently in complicated environment. 展开更多
关键词 Archimedes optimisation algorithm grey wolf optimisation path planning reinforcement learning unmanned aerial vehicles
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测 被引量:1
12
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习机 改进粒子群优化算法
在线阅读 下载PDF
基于改进模糊支持向量回归模型的地震人员伤亡预测研究 被引量:1
13
作者 沈健 李梦瑶 《价值工程》 2025年第7期101-104,共4页
本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最... 本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最优FSVR参数,最终建立PSO-FSVR地震伤亡预测模型。 展开更多
关键词 地震伤亡预测 模糊支持向量回归 粒子群优化算法 主成分分析
在线阅读 下载PDF
基于响应面-遗传算法的胶凝砂砾石配合比优化
14
作者 任文渊 范明辉 +2 位作者 焦宇浩 李润阳 杨普新 《建筑材料学报》 北大核心 2025年第11期1101-1110,共10页
为了探究不同二级配下胶凝砂砾石(CSGR)的工作性能和力学性能,开展了单因素试验和基于响应面法设计的多因素试验,讨论了砂率、水胶比、二级配单因素及交互作用对CSGR性能的影响,建立了二次多项式回归模型,同时基于非支配排序遗传算法(NS... 为了探究不同二级配下胶凝砂砾石(CSGR)的工作性能和力学性能,开展了单因素试验和基于响应面法设计的多因素试验,讨论了砂率、水胶比、二级配单因素及交互作用对CSGR性能的影响,建立了二次多项式回归模型,同时基于非支配排序遗传算法(NSGA-Ⅱ)进行了多目标优化。结果表明:水胶比对CSGR的振动压实(VC)值、抗压强度、劈裂抗拉强度、拉压比均有显著影响,二级配与水胶比交互作用对抗压强度具有显著影响;NSGA-Ⅱ实现了“VC值-抗压强度-劈裂抗拉强度”的多目标优化,为CSGR提供了可靠且多样化的配合比选择,对胶凝砂砾石坝的实际施工与推广应用具有极高的参考价值。 展开更多
关键词 胶凝砂砾石 振动压实(VC)值 力学性能 响应面法 遗传算法 配合比优化
在线阅读 下载PDF
等体积错位分段永磁电机电磁优化及降振减噪
15
作者 高锋阳 岳文瀚 +3 位作者 高建宁 徐昊 孙伟 吴银波 《哈尔滨工业大学学报》 北大核心 2025年第6期12-25,共14页
为提高内置U型永磁同步电机电磁性能同时降低电机周身振动噪声,提出聚磁式等体积错位分段内置U型永磁同步电机。首先,推导电机气隙磁通密度、空载反电动势及输出转矩等电磁性能表达式和径向电磁力、振动速度、加速度等电磁振动表达式。... 为提高内置U型永磁同步电机电磁性能同时降低电机周身振动噪声,提出聚磁式等体积错位分段内置U型永磁同步电机。首先,推导电机气隙磁通密度、空载反电动势及输出转矩等电磁性能表达式和径向电磁力、振动速度、加速度等电磁振动表达式。其次,探究单独增设磁障结构、错位结构和Halbach充磁结构对电机电磁性能影响。最后,对电机结构参数进行分析及寻优,对比5种U型磁极永磁同步电机电磁性能、电磁振动和噪声波动。研究结果表明,所增设4种结构对电机性能影响明显,电磁性能方面,增设磁障、错位结构和辅助槽能提高电机输出转矩降低齿槽转矩,Halbach充磁能改善输出转矩、径向气隙磁通密度分布以及径向电磁力分布,三者结合可使电机输出转矩得到提升,输出转矩更加平滑,齿槽转矩和转矩脉动降低明显;振动噪声方面,增设辅助槽结构大幅抑制径向电磁力8、16次谐波幅值;增设磁障结构能抑制电机低频振动加速度,增设错位结构和Halbach充磁能抑制电机高频振动加速度,4种结构配合可使空间8、16次径向电磁力明显下降,在时间4倍频和6倍频振动加速度得到明显抑制,电机最大声压级及机械强度满足电机运行要求,并加工出永磁电机转子样件。 展开更多
关键词 内置U型永磁同步电机 转子辅助槽 降振减噪 多目标遗传算法 Halbach充磁 转矩优化
在线阅读 下载PDF
机器人抛磨表面特征参数优化
16
作者 于淼 潘震 +1 位作者 刘旭 汤晨 《科技和产业》 2025年第16期38-46,共9页
为随着工业制造技术的不断发展,六轴机器人在表面抛磨加工中的应用日益广泛。针对六轴机器人在抛磨表面处理过程中的表面粗糙度控制问题展开研究。首先介绍了六轴机器人在抛磨表面加工中的应用背景和重要意义。进而利用正交实验的方法... 为随着工业制造技术的不断发展,六轴机器人在表面抛磨加工中的应用日益广泛。针对六轴机器人在抛磨表面处理过程中的表面粗糙度控制问题展开研究。首先介绍了六轴机器人在抛磨表面加工中的应用背景和重要意义。进而利用正交实验的方法对抛磨参数进行正交处理得到正交实验数据,通过MATLAB软件编写BP神经网络对数据进行归一化处理,建立表面粗糙度预测模型,并对规划结果进行仿真实验。接着利用遗传算法对45号钢抛磨工艺参数进行参数优化、路径规划。结果表明该方法能够实现了45号钢表面粗糙度等效且精确的辨识,充分证明了该方法在相关任务中的有效性和实用性。 展开更多
关键词 神经网络 遗传算法 粗糙度模型 参数优化 路径规划
在线阅读 下载PDF
一种基于高光谱技术的温室环境下叶片遮挡树莓果实识别模型 被引量:1
17
作者 陈竹筠 席瑞谦 +2 位作者 张晓乾 顾玉红 任振辉 《河北农业大学学报》 北大核心 2025年第3期107-116,126,共11页
在智能化农业管理中,精准识别被叶片遮挡的树莓果实是实现高效采摘作业的关键难题。传统机器视觉技术因果实易被叶片遮挡而难以准确定位,影响采摘效率与质量,也无法满足温室对果实生长状况精准监测与管理的需求。本研究针对现有机器视... 在智能化农业管理中,精准识别被叶片遮挡的树莓果实是实现高效采摘作业的关键难题。传统机器视觉技术因果实易被叶片遮挡而难以准确定位,影响采摘效率与质量,也无法满足温室对果实生长状况精准监测与管理的需求。本研究针对现有机器视觉技术在处理遮挡问题上的局限性,开发了一种基于高光谱技术的树莓果实识别方法,首次引入并优化了voting-RF-MLP集成模型。通过采集不同遮挡状态下的树莓果实反射率光谱数据,为模型训练提供了全面的数据集,并采用定制化的数据预处理和PCA特征提取算法提升数据质量。voting-RF-MLP模型结合随机森林(RF)和多层感知器(MLP)优势,通过GridSearchCV算法优化超参数,确保最优性能。测试结果显示,voting-RF-MLP模型在各类遮挡状态下分类性能卓越,准确率达到0.8435,精确度、召回率和F1分数均显著优于传统单一模型。这一成果提高了树莓果实识别的准确性,该模型可为自动化采摘设备提供精准的果实定位支持,在叶片遮挡条件下实现树莓果实深度距离信息(遮挡距离)的预测,且952条光谱样本推理时间仅需13.43 s,可为高光谱技术在复杂农业场景中的高效计算提供算法基础,助力精准农业的智能化升级。 展开更多
关键词 高光谱技术 机器学习 模型优化 树莓果实识别 集成模型 voting算法
在线阅读 下载PDF
基于EKF-HInformer模型估计汽车动力电池的SOC&SOH 被引量:1
18
作者 彭自然 杨肖阳 肖伸平 《电子测量与仪器学报》 北大核心 2025年第3期21-33,共13页
针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一... 针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。 展开更多
关键词 动力电池 荷电状态 健康状态 自适应增益因子 扩展卡尔曼滤波 Hampel优化算法 INFORMER
原文传递
基于WOA-LSTM的电离层TEC短期预报模型研究
19
作者 罗双 陈健 +2 位作者 张涛 赵兴旺 刘超 《地球物理学进展》 北大核心 2025年第2期417-431,共15页
电离层总电子含量(Total Electron Content,TEC)精确预报对提高卫星导航定位精度具有重要意义.为此,提出一种联合鲸鱼优化算法(Whale Optimization Algorithm,WOA)与长短期记忆神经网络模型(Long-Short Term Memory Networks,LSTM)的TE... 电离层总电子含量(Total Electron Content,TEC)精确预报对提高卫星导航定位精度具有重要意义.为此,提出一种联合鲸鱼优化算法(Whale Optimization Algorithm,WOA)与长短期记忆神经网络模型(Long-Short Term Memory Networks,LSTM)的TEC短期预报模型;该模型通过LSTM模型训练得到WOA算法的最佳适应度,并利用优化的WOA算法得到LSTM模型最优参数.最后,结合欧洲定轨中心(Center for Orbit Determination in Europe,CODE)提供的TEC格网点数据对所提模型进行验证;试验结果表明:地磁平静状态下,组合模型的平均相关系数ρ较LSTM模型在低、中、高纬度分别提升了2.8%、6.2%和14.8%;地磁活跃状态下组合模型的平均相关系数ρ在低、中、高纬度地区较LSTM模型分别提升了6.6%、9.2%与7.9%.且模型预报效果与地磁活跃状态、季节、太阳活跃水平等有关,在不同地磁活跃状态、季节与不同太阳活动水平情况下,组合模型预报效果均优于单一LSTM模型,为电离层TEC预报模型的实际应用提供了参考. 展开更多
关键词 电离层 总电子含量 鲸鱼优化算法 神经网络 短期预测
原文传递
基于VMD-TSAO-BiLSTM的短期光伏发电功率预测 被引量:2
20
作者 李有为 王芳(指导) 顾伟光 《上海电机学院学报》 2025年第1期21-26,共6页
光伏发电对于解决全球能源短缺问题具有重要意义,准确预测光伏发电功率有助于光电并网的合理调度和可靠的电网运行。提出了一种基于变分模态分解(VMD)、改进的雪消融优化算法(TSAO)以及双向长短期记忆神经网络(BiLSTM)的短期光伏发电功... 光伏发电对于解决全球能源短缺问题具有重要意义,准确预测光伏发电功率有助于光电并网的合理调度和可靠的电网运行。提出了一种基于变分模态分解(VMD)、改进的雪消融优化算法(TSAO)以及双向长短期记忆神经网络(BiLSTM)的短期光伏发电功率预测模型。首先,原始光伏功率经VMD分解为多个子模态;然后,对每个子模态分别建立TSAO-BiLSTM预测模型,使用改进的Tent混沌映射、自适应t分布和动态选择策略对雪消融优化算法(SAO)进行改进,使用改进后的SAO对BiLSTM的初始学习率、最大训练周期、隐藏单元数目以及L2正则化参数进行寻优;最后,将各个子模型的预测结果叠加得到最终预测结果。仿真结果表明:VMD-TSAO-BiLSTM模型与其他模型相比,能更好地拟合光伏功率数据,具有较高的预测精度。 展开更多
关键词 光伏功率预测 变分模态分解 优化算法 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部