以压力容器气体泄漏展开研究,提出了一种融合黄金正弦的减法平均优化器(subtraction-average-based optimizer with golden sine,GSABO)、优化变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural ne...以压力容器气体泄漏展开研究,提出了一种融合黄金正弦的减法平均优化器(subtraction-average-based optimizer with golden sine,GSABO)、优化变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural network,CNN)与支持向量机(support vector machine,SVM)联合分类检测的方法。首先,引入了融合黄金正弦的减法平均优化器对变分模态分解的参数模态个数K和惩罚参数α进行寻优,将最小包络熵为适应度函数得到最佳的K和惩罚参数α,计算最佳IMF分量的9种时域指标构建特征向量,输入CNN-SVM联合的分类方法进行特征提取并对气体泄漏情况进行识别。经实验分析,提出的引入融合黄金正弦的减法平均优化器优化后的VMD方法能够有效地自适应获取最优参数组,然后对压力容器气体泄漏声波信号进行特征提取,选取最优的特征组合输入CNNSVM联合分类检测,得到泄漏与否判别准确率高达99.16%,有助于对后续研究进一步开展。展开更多
SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,...SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF_(6)电气设备运行状态具有重要意义。展开更多
文摘SF_(6)电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO_(2)浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO_(2)浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF_(6)电气设备运行状态具有重要意义。