期刊文献+
共找到25,385篇文章
< 1 2 250 >
每页显示 20 50 100
A high output power 340 GHz balanced frequency doubler designed based on linear optimization method
1
作者 LIU Zhi-Cheng ZHOU Jing-Tao +5 位作者 MENG Jin WEI Hao-Miao YANG Cheng-Yue SU Yong-Bo JIN Zhi JIA Rui 《红外与毫米波学报》 北大核心 2025年第2期184-191,共8页
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ... In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%. 展开更多
关键词 linear optimization method(LOM) three-dimensional electromagnetic model(3D-EM) Harmonic impedance optimization Schottky planar diode Terahertz frequency doubler
在线阅读 下载PDF
A Novel Multi-Objective Topology Optimization Method for Stiffness and Strength-Constrained Design Using the SIMP Approach
2
作者 Jianchang Hou Zhanpeng Jiang +4 位作者 Fenghe Wu Hui Lian Zhaohua Wang Zijian Liu Weicheng Li 《Computer Modeling in Engineering & Sciences》 2025年第8期1545-1572,共28页
In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are reg... In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization. 展开更多
关键词 Topology optimization stiffness-strength coordination SIMP method stress constraints p-norm aggregation sensitivity analysis
在线阅读 下载PDF
Collision-inducing method for UAV evasive maneuvers based on receding horizon optimization
3
作者 Haonan Tang Zhigong Tang +1 位作者 Gong Chen Jifeng Guo 《Defence Technology(防务技术)》 2025年第8期141-154,共14页
Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method ge... Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method generated a specific trajectory for the UAV to effectively induce the proportional navigation missile to successfully intercept the obstacle,thereby accomplishing the evasive maneuver.The evasive maneuver was divided into two distinct stages,namely the collision-inducing phase and the fast departure phase.The obstacle potential field-based target selection algorithm was employed to identify the most appropriate target obstacle,while the induced trajectory was determined through a combination of receding horizon optimization and the hp-adaptive pseudo-spectral method.Simulation experiments were carried out under three different types of obstacle environments and one multiobstacle environment,and the simulation results show that the method proposed in this paper greatly improves the success rate of UAV evasive maneuvers,proving the effectiveness of this method. 展开更多
关键词 UAV MISSILE Proportional navigation Evasive maneuver Receding horizon optimization Hp-adaptive pseudo-spectral method
在线阅读 下载PDF
A body-fitted adaptive mesh and Helmholtz-type filter based parameterized level-set method for structural topology optimization
4
作者 Yijie Lu Xueying Chang +3 位作者 Zhengwei Zhang Hui Liu Yanguo Zhou Hao Li 《Acta Mechanica Sinica》 2025年第5期131-147,共17页
Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation o... Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure. 展开更多
关键词 Topology optimization Parameterized level-set method Helmholtz-type filter Body-fitted adaptive mesh
原文传递
Smooth Boundary Topology Optimization-A New Framework for Movable Morphable Smooth Boundary Method
5
作者 Jiazheng Du Ju Chen +2 位作者 Hongling Ye Bing Lin Zhichao Guo 《Computer Modeling in Engineering & Sciences》 2025年第7期791-809,共19页
The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through... The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance. 展开更多
关键词 Movable Morphable Smooth Boundary continuum structure topology optimization jagged boundary ICM method
在线阅读 下载PDF
Design optimization of quasi-rectangular tunnels based on hyperstatic reaction method and ensemble learning
6
作者 Tai-Tien Nguyen Ba-Trung Cao +2 位作者 Van-Vi Pham Hoang-Giang Bui Ngoc-Anh Do 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5398-5415,共18页
The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical ... The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical loads,an interior column is often installed at the center to enhance its load-bearing capacity.This study aims to develop a hyperstatic reaction method(HRM)for the analysis of deformation and structural integrity in this specific tunnel type.The computational model is validated through comparison with the corresponding finite element method(FEM)analysis.Following comprehensive validation,an ensemble machine learning(ML)model is proposed,using numerical benchmark data,to facilitate real-time design and optimization.Subsequently,three widely used ensemble models,i.e.random forest(RF),gradient boosting decision tree(GBDT),and extreme gradient boosting(XGBoost)are compared to identify the most efficient ML model for replacing the HRM model in the design optimization process.The performance metrics,such as the coefficient of determination R2 of about 0.999 and the mean absolute percentage error(MAPE)of about 1%,indicate that XGBoost outperforms the others,exhibiting excellent agreement with the HRM analysis.Additionally,the model demonstrates high computational efficiency,with prediction times measured in seconds.Finally,the HRM-XGBoost model is integrated with the well-known particle swarm optimization(PSO)for the real-time design optimization of quasi-rectangular tunnels,both with and without the interior column.A feature importance assessment is conducted to evaluate the sensitivity of design input features,enabling the selection of the most critical features for the optimization task. 展开更多
关键词 Hyperstatic reaction method(HRM) Quasi-rectangular tunnel Tunnel lining Numerical analysis Real-time design optimization Extreme gradient boosting(XGBoost) Shapley additive explanations(SHAP)
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
7
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
An Efficient Method for Reliability-based Multidisciplinary Design Optimization 被引量:12
8
作者 范辉 李为吉 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期335-340,共6页
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ... Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process. 展开更多
关键词 multidisciplinary design optimization (MDO) concurrent subspace optimization reliability analysis advanced first order second moment method
在线阅读 下载PDF
INTEGRATION SHAPE AND SIZING OPTIMIZATION OF COMPOSITE WING STRUCTURE BASED ON RESPONSE SURFACE METHOD 被引量:7
9
作者 王伟 杨伟 常楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期94-100,共7页
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl... An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting. 展开更多
关键词 composite structures shape optimization WINGS sizing optimization response surface method
在线阅读 下载PDF
Couplings in Multi-criterion Aerodynamic Optimization Problems Using Adjoint Methods and Game Strategies 被引量:4
10
作者 唐智礼 董军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期1-8,共8页
The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint ... The tighten couplings of game strategies with adjoint methods for multi-criterion aerodynamic design optimization are ad-dressed. Its numerical implementation is also described in details. In cooperative game,adjoint methods are coupled in parallel to compute Pareto front collaboratively. Conversely in a Nash game,adjoint methods are coupled in each player s decision making to achieve Nash equilibrium competitively. In Stackelberg game,adjoint methods used by players are nested hierarchically through incomp... 展开更多
关键词 multi-criterion optimization AERODYNAMICS adjoint methods game strategies Nash game Stackelberg game Pareto front
原文传递
2D multi-scale hybrid optimization method for geophysical inversion and its application 被引量:2
11
作者 潘纪顺 王新建 +4 位作者 张先康 徐朝繁 Zhao Ping 田晓峰 潘素珍 《Applied Geophysics》 SCIE CSCD 2009年第4期337-348,394,共13页
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ... Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust. 展开更多
关键词 MULTI-SCALE seismic travel-time tomography hybrid optimization method INVERSION A'nyemaqen suture zone
在线阅读 下载PDF
THREE-DIMENSIONAL TRAJECTORY OPTIMIZATION WITH DIRECT METHOD 被引量:1
12
作者 沈春林 刘国刚 +1 位作者 吴文海 李丽荣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第2期118-122,共5页
The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And... The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board. 展开更多
关键词 direct optimization method trajectory optimization low altitude penetration simplex algorithm
在线阅读 下载PDF
EFFICIENT METHOD FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION BY CONSIDERING UNCERTAINTY
13
作者 贺谦 李元生 +2 位作者 敖良波 温志勋 岳珠峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期213-218,共6页
A new reliability-based multidisciplinary design optimization (RBMDO) framework is proposed by combining the single-loop-based reliability analysis (SLBRA) method with multidisciplinary feasible (MDF) method. Th... A new reliability-based multidisciplinary design optimization (RBMDO) framework is proposed by combining the single-loop-based reliability analysis (SLBRA) method with multidisciplinary feasible (MDF) method. The Kriging approximate model with updating is introduced to reduce the computational cost of MDF caused by the complex structure. The computational efficiency is remarkably improved as the lack of iterative process during reliability analysis. Special attention is paid to a turbine blade design optimization by adopting the proposed method. Results show that the method is much more efficient than the commonly used double-loop based RBMDO method. It is feasible and efficient to apply the method to the engineering design. 展开更多
关键词 multidisciplinary design optimization multidisciplinary feasible method single loop method reliability analysis Kriging approximate model
在线阅读 下载PDF
PARETO FRONT CAPTURE USING DETERMINISTIC OPTIMIZATION METHODS IN MULTI-CRITERION AERODYNAMIC DESIGN
14
作者 唐智礼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期81-86,共6页
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a... Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency. 展开更多
关键词 multi-criterion design Pareto front deterministic optimization methods AERODYNAMICS
在线阅读 下载PDF
Adaptive optimization methodology based on Kriging modeling and a trust region method 被引量:14
15
作者 Chunna LI Qifeng PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期281-295,共15页
Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for c... Surrogate-Based Optimization(SBO) is becoming increasingly popular since it can remarkably reduce the computational cost for design optimizations based on high-fidelity and expensive numerical analyses. However, for complicated optimization problems with a large design space, many design variables, and strong nonlinearity, SBO converges slowly and shows imperfection in local exploitation. This paper proposes a trust region method within the framework of an SBO process based on the Kriging model. In each refinement cycle, new samples are selected by a certain design of experiment method within a variable design space, which is sequentially updated by the trust region method. A multi-dimensional trust-region radius is proposed to improve the adaptability of the developed methodology. Further, the scale factor and the limit factor of the trust region are studied to evaluate their effects on the optimization process. Thereafter, different SBO methods using error-based exploration, prediction-based exploitation, refinement based on the expected improvement function, a hybrid refinement strategy, and the developed trust-regionbased refinement are utilized in four analytical tests. Further, the developed optimization methodology is employed in the drag minimization of an RAE2822 airfoil. Results indicate that it has better robustness and local exploitation capability in comparison with those of other SBO 展开更多
关键词 AIRFOIL Design optimization KRIGING model Surrogate-based optimization TRUST-REGION method
原文传递
Flight strategy optimization for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method 被引量:23
16
作者 Shaoqi WANG Dongli MA +2 位作者 Muqing YANG Liang ZHANG Guanxiong LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第10期2286-2298,共13页
Solar-powered aircraft have attracted great attention owing to their potential for longendurance flight and wide application prospects.Due to the particularity of energy system,flight strategy optimization is a signif... Solar-powered aircraft have attracted great attention owing to their potential for longendurance flight and wide application prospects.Due to the particularity of energy system,flight strategy optimization is a significant way to enhance the flight performance for solar-powered aircraft.In this study,a flight strategy optimization model for high-altitude long-endurance solar-powered aircraft was proposed.This model consists of three-dimensional kinematic model,aerodynamic model,energy collection model,energy store model and energy loss model.To solve the nonlinear optimal control problem with process constraints and terminal constraints,Gauss pseudo-spectral method was employed to discretize the state equations and constraint equations.Then a typical mission flying from given initial point to given final point within a time interval was considered.Results indicate that proper changes of the attitude angle contribute to increasing the energy gained by photovoltaic cells.Utilization of gravitational potential energy can partly take the role of battery pack.Integrating these two measures,the optimized flight strategy can improve the final state of charge compared with current constant-altitude constant-velocity strategy.The optimized strategy brings more profits on condition of lower sunlight intensity and shorter daytime. 展开更多
关键词 Battery PACK FLIGHT strategy optimization GAUSS pseudo-spectral method PHOTOVOLTAIC cell Solar-powered aircraft
原文传递
Direct trajectory optimization based on a mapped Chebyshev pseudospectral method 被引量:19
17
作者 Guo Xiao Zhu Ming 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期401-412,共12页
In view of generating optimal trajectories of Bolza problems, standard Chebyshev pseudospectral (PS) method makes the points' accumulation near the extremities and rarefaction of nodes close to the center of interv... In view of generating optimal trajectories of Bolza problems, standard Chebyshev pseudospectral (PS) method makes the points' accumulation near the extremities and rarefaction of nodes close to the center of interval, which causes an ill-condition of differentiation matrix and an oscillation of the optimal solution. For improvement upon the difficulties, a mapped Chebyshev pseudospectral method is proposed. A conformal map is applied to Chebyshev points to move the points closer to equidistant nodes. Condition number and spectral radius of differentiation matrices from both methods are presented to show the improvement. Furthermore, the modification keeps the Chebyshev pseudospectral method's advantage, the spectral convergence rate. Based on three numerical examples, a comparison of the execution time, convergence and accuracy is presented among the standard Chebyshev pseudospectral method, other collocation methods and the proposed one. In one example, the error of results from mapped Chebyshev pseudospectral method is reduced to 5% of that from standard Chebyshev pseudospectral method. 展开更多
关键词 Chebyshev approximation Conformal shift INTERPOLATION optimization Pseudospectral method TRAJECTORY
原文传递
A NEW DERIVATIVE FREE OPTIMIZATION METHOD BASED ON CONIC INTERPOLATION MODEL 被引量:9
18
作者 倪勤 胡书华 《Acta Mathematica Scientia》 SCIE CSCD 2004年第2期281-290,共10页
In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model f... In this paper, a new derivative free trust region method is developed based on the conic interpolation model for the unconstrained optimization. The conic interpolation model is built by means of the quadratic model function, the collinear scaling formula, quadratic approximation and interpolation. All the parameters in this model are determined by objective function interpolation condition. A new derivative free method is developed based upon this model and the global convergence of this new method is proved without any information on gradient. 展开更多
关键词 Derivative free optimization method conic interpolation model quadratic interpolation model trust region method unconstrained optimization
在线阅读 下载PDF
Multiscale topology optimization using feature-driven method 被引量:10
19
作者 Zhao XU Weihong ZHANG +1 位作者 Ying ZHOU Jihong ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期621-633,共13页
This paper presents a multiscale design method for simultaneous topology optimization of both macrostructures and microstructures.Geometric features are extended as design primitives at both macro and micro scales and... This paper presents a multiscale design method for simultaneous topology optimization of both macrostructures and microstructures.Geometric features are extended as design primitives at both macro and micro scales and represented by Level Set Functions(LSFs).Parameters related to the locations,sizes,and orientations of macro and micro features are considered as design variables and optimized simultaneously.In the overlapping areas of different macro features,embedded microstructures are optimally figured out as the solution of the corresponding sub-optimization,problem.In this study,the eXtended Finite Element Method(XFEM)is implemented for structural and sensitivity analyses with respect to design variables.This method has the advantage of using a fixed grid independent of the topology optimization process.The homogenization procedure is applied to calculate the effective properties of considered microstructures in each macro feature.Numerical examples are presented to illustrate the effectiveness of the proposed method.Results depict that the multiscale design cannot obviously improve structural stiffness compared with a solid-material design under the linear elastic condition. 展开更多
关键词 Feature-driven method Level SET function Multiscale design TOPOLOGY optimization XFEM
原文传递
Topological and Shape Optimization of Flexure Hinges for Designing Compliant Mechanisms Using the Level Set Method 被引量:8
20
作者 Benliang Zhu Xianmin Zhang +2 位作者 Min Liu Qi Chen Hai Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期42-53,共12页
A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hin... A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hinges with di erent configurations have been successively proposed, they are often designed based on designers' experiences and inspirations. This study presents a systematic method for topological optimization of flexure hinges by using the level set method. Optimization formulations are developed by considering the functional requirements and geometrical constraints of flexure hinges. The functional requirements are first constructed by maximizing the compliance in the desired direction while minimizing the compliances in the other directions. The weighting sum method is used to construct an objective function in which a self-adjust method is used to set the weighting factors. A constraint on the symmetry of the obtained configuration is developed. Several numerical examples are presented to demonstrate the validity of the proposed method. The obtained results reveal that the design of a flexure hinge starting from the topology level can yield more choices for compliant mechanism design and obtain better designs that achieve higher performance. 展开更多
关键词 TOPOLOGY optimization Compliant mechanisms Flexure HINGES Level SET method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部