In previous seismotectonic studies,the emphasis was placed on the inherited active fault zones.In the recent tectonic stage that essentially keeps in step with the current regional geologic environment and the stress ...In previous seismotectonic studies,the emphasis was placed on the inherited active fault zones.In the recent tectonic stage that essentially keeps in step with the current regional geologic environment and the stress field,however,there are also some newly generated fault zones.By studying the seismicity in North and Southwest China,it has been known that the NE-trending Tangshan-Hejian-Cixian and NW-trending Tengchong-Gengma-Lancang seismic zones are just two newly generated fault zones.As distinguished from the inherited fault zones,they are called the newly generated seismotectonic zones.This paper deals with the existence of these two seismogenic zones from their seismicity and geological structures,gives a preliminary analysis of their characteristics,and shows their significance.展开更多
The results of geological research show that those phenomena such as surface geology,geomorphology,deep geophysical field,and time-space distribution of seismicities can be usedas the main seismogeological indicators ...The results of geological research show that those phenomena such as surface geology,geomorphology,deep geophysical field,and time-space distribution of seismicities can be usedas the main seismogeological indicators to identify the newly-generated seismic rupture zone(NSRZ).According to their formation and evolution process,the NSRZs can be divided intothree types:pre-rupture-isolated,quasi-rupture-discontinuous and major-rupture-connected.In a pre-rupture-isolated NSRZ,the seismicity is dominated by medium-small earthquakes.In a quasi-rupture-discontinuous NSRZ,the frequency and intensity of strong earthquakesincrease and there may even be the largest earthquake to occur.A major-rupture-connectedNSRZ is the segment where rupture has entered the mature stage;in such a zone,theintensity and duration of seismic activity depend on the constitutive condition and regionalstress field in the zone.展开更多
The Daliangshan fault zone is the eastern branch in the central section of Xianshuihe-Xiaojiang fault system. It has been neglected for a long time, partly because of no destructive earthquake records along this fault...The Daliangshan fault zone is the eastern branch in the central section of Xianshuihe-Xiaojiang fault system. It has been neglected for a long time, partly because of no destructive earthquake records along this fault zone. On the other hand, it is located on the remote and inaccessible plateau. So far it was excluded as part of the Xianshuihe-Xiaojiang fault system. Based on the interpretation of aerophotographs and field investigations, we document this fault zone in detail, and give an estimation of strike-slip rate about 3 mm/a in Late Quaternary together with age dating data. The results suggest that the Daliangshan fault zone is a newly-generated fault zone resulted from shortcutting in the central section of Xianshuihe-Xiaojiang fault system because of the clockwise rotation of the Southeastern Tibetan Crustal Block, which is bounded by the Xianshuihe-Xiaojiang fault system. Moreover, the shortcutting may make the Daliangshan fault zone replace the Anninghe and Zemuhe fault zones gradually, and finally, the later two fault zones will probably die out with the continuous clockwise rotation.展开更多
The Longling-Lancang fault zone, consisting of sets of en echelon or clustered faults, is a newly-generated rupture zone. it is characterized by the distribution of active faults, earthquake faults and earthguakes in ...The Longling-Lancang fault zone, consisting of sets of en echelon or clustered faults, is a newly-generated rupture zone. it is characterized by the distribution of active faults, earthquake faults and earthguakes in zones. Formed in the Early-Middle Pleistocene, stili active in the late, it moves dextrally and extensionally. it tends to cut off the locked segments and discontinuous segments at first, then pervades totally along the zone, accompanied by strong earthguakes.展开更多
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet...Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.展开更多
文摘In previous seismotectonic studies,the emphasis was placed on the inherited active fault zones.In the recent tectonic stage that essentially keeps in step with the current regional geologic environment and the stress field,however,there are also some newly generated fault zones.By studying the seismicity in North and Southwest China,it has been known that the NE-trending Tangshan-Hejian-Cixian and NW-trending Tengchong-Gengma-Lancang seismic zones are just two newly generated fault zones.As distinguished from the inherited fault zones,they are called the newly generated seismotectonic zones.This paper deals with the existence of these two seismogenic zones from their seismicity and geological structures,gives a preliminary analysis of their characteristics,and shows their significance.
基金This project was sponsored by the Nationnal Science Foundation(496742149),China.
文摘The results of geological research show that those phenomena such as surface geology,geomorphology,deep geophysical field,and time-space distribution of seismicities can be usedas the main seismogeological indicators to identify the newly-generated seismic rupture zone(NSRZ).According to their formation and evolution process,the NSRZs can be divided intothree types:pre-rupture-isolated,quasi-rupture-discontinuous and major-rupture-connected.In a pre-rupture-isolated NSRZ,the seismicity is dominated by medium-small earthquakes.In a quasi-rupture-discontinuous NSRZ,the frequency and intensity of strong earthquakesincrease and there may even be the largest earthquake to occur.A major-rupture-connectedNSRZ is the segment where rupture has entered the mature stage;in such a zone,theintensity and duration of seismic activity depend on the constitutive condition and regionalstress field in the zone.
基金the National Basic Research Program of China (Grant No. 2004CB418401)the National Natural Science Foundation of China (Grant No. 40472109)+1 种基金Joint Earthquake Science Foundation of China (Grant No. 105066)Japan Grant-in Aid for Scientific Research from Japan Ministry of Education, Cul-ture, Sports, Science and Technology (Grant No. 18500776)
文摘The Daliangshan fault zone is the eastern branch in the central section of Xianshuihe-Xiaojiang fault system. It has been neglected for a long time, partly because of no destructive earthquake records along this fault zone. On the other hand, it is located on the remote and inaccessible plateau. So far it was excluded as part of the Xianshuihe-Xiaojiang fault system. Based on the interpretation of aerophotographs and field investigations, we document this fault zone in detail, and give an estimation of strike-slip rate about 3 mm/a in Late Quaternary together with age dating data. The results suggest that the Daliangshan fault zone is a newly-generated fault zone resulted from shortcutting in the central section of Xianshuihe-Xiaojiang fault system because of the clockwise rotation of the Southeastern Tibetan Crustal Block, which is bounded by the Xianshuihe-Xiaojiang fault system. Moreover, the shortcutting may make the Daliangshan fault zone replace the Anninghe and Zemuhe fault zones gradually, and finally, the later two fault zones will probably die out with the continuous clockwise rotation.
文摘The Longling-Lancang fault zone, consisting of sets of en echelon or clustered faults, is a newly-generated rupture zone. it is characterized by the distribution of active faults, earthquake faults and earthguakes in zones. Formed in the Early-Middle Pleistocene, stili active in the late, it moves dextrally and extensionally. it tends to cut off the locked segments and discontinuous segments at first, then pervades totally along the zone, accompanied by strong earthguakes.
基金the National Basic Research Program of China (Grant No. 2004CB418401)the National Natural Science Foundation of China (Grant No. 40474037)
文摘Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.