In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Rese...In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Research Facility(CNUF), we are assembling a consortium of experts in relevant disciplines, both domestically and internationally,to delineate high-precision physics experiments that leverage the state-of-the-art research environment afforded by CNUF.Our focus encompasses six primary domains of inquiry: hadron physics—including endeavors such as the super eta factory and investigations into light hadron structures;muon physics;neutrino physics;neutron physics;the testing of fundamental symmetries;and the exploration of quantum effects within nuclear physics, along with the utilization of vortex accelerators.We aim to foster a well-rounded portfolio of large, medium, and small-scale projects, thus unlocking new scientific avenues and optimizing the potential of the Huizhou large scientific facility. The aspiration for international leadership in scientific research will be a guiding principle in our strategic planning. This initiative will serve as a foundational reference for the Institute of Modern Physics in its strategic planning and goal-setting, ensuring alignment with its developmental objectives while striving to secure a competitive edge in technological advancement. Our ambition is to engage in substantive research within these realms of high-precision physics, to pursue groundbreaking discoveries, and to stimulate progress in China's nuclear physics landscape, positioning Huizhou as a preeminent global hub for advanced nuclear physics research.展开更多
We have studied X-ray spectral state transitions that can be seen in the long- term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) an...We have studied X-ray spectral state transitions that can be seen in the long- term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu &Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.展开更多
The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory ...The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accor- dance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g.9 40 MQ as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the the- ory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.展开更多
During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the fiel...During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the field of neutron interferometry and ultra-small angle neutron scattering as well as in the field of radiochemistry, education and training and research in the field of nuclear safeguards and nuclear security. Potential further directions of research are outlined where the Atominstitut of Vienna might concentrate in future.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.12075326)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2025A1515010669)+2 种基金the Natural Science Foundation of Guangzhou (Grant No.2024A04J6243)the Fundamental Research Funds for the Central Universities in Sun Yat-sen University (No.23xkjc017)the Innovation Training Program for bachelor students in Sun Yat-sen University。
文摘In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Research Facility(CNUF), we are assembling a consortium of experts in relevant disciplines, both domestically and internationally,to delineate high-precision physics experiments that leverage the state-of-the-art research environment afforded by CNUF.Our focus encompasses six primary domains of inquiry: hadron physics—including endeavors such as the super eta factory and investigations into light hadron structures;muon physics;neutrino physics;neutron physics;the testing of fundamental symmetries;and the exploration of quantum effects within nuclear physics, along with the utilization of vortex accelerators.We aim to foster a well-rounded portfolio of large, medium, and small-scale projects, thus unlocking new scientific avenues and optimizing the potential of the Huizhou large scientific facility. The aspiration for international leadership in scientific research will be a guiding principle in our strategic planning. This initiative will serve as a foundational reference for the Institute of Modern Physics in its strategic planning and goal-setting, ensuring alignment with its developmental objectives while striving to secure a competitive edge in technological advancement. Our ambition is to engage in substantive research within these realms of high-precision physics, to pursue groundbreaking discoveries, and to stimulate progress in China's nuclear physics landscape, positioning Huizhou as a preeminent global hub for advanced nuclear physics research.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 0773023,10833002 and 11073043)the One Hundred Talents project of the Chinese Academy of Sciences+3 种基金the Shanghai Pujiang Program (08PJ14111)the National Basic Research Program of China (973project 2009CB824800)the grant for concept study of space science from the Chinese Academy of Sciencethe starting funds at the Shanghai Astronomical Observatory
文摘We have studied X-ray spectral state transitions that can be seen in the long- term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu &Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.
基金supported by NASA EPSCoR(NNX07AL52A)NSF CISMand REU,the Alabama A&M University(AAMU)Title Ⅲ programsthe National Natural Science Foundation of China(Grant No.40890161)
文摘The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accor- dance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g.9 40 MQ as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the the- ory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.
文摘During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the field of neutron interferometry and ultra-small angle neutron scattering as well as in the field of radiochemistry, education and training and research in the field of nuclear safeguards and nuclear security. Potential further directions of research are outlined where the Atominstitut of Vienna might concentrate in future.