Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
Coal-based soild wastes(CBSWs)are industrial byproducts that can be harmful to the environment.The exploitation and utilization of CBsWs offer societal advantages such as resource conservation,pollution reduction,and ...Coal-based soild wastes(CBSWs)are industrial byproducts that can be harmful to the environment.The exploitation and utilization of CBsWs offer societal advantages such as resource conservation,pollution reduction,and cost-effective production.However,environmentally sustainable management remains a worldwide challenge due to the substantial production volume and limited disposal capacity of CBSWs.The physicochemical properties and utilization of CBSWs are summarized,including fly ash,coal gangue and coal gasification slag.It also presents the current global applications status of CBSWs resources and examines market supply and demand.Subsequently,the paper provides an overview of studies on ways to utilise CBSWs,highlighting the primary avenues of CBSWs resource utilization which are mainly from the fields of chemical materials,metallurgy and agriculture.Furthermore,a comparative evaluation of the various methods for CBSWs resource recovery is conducted,outlining their respective advantages and disadvantages.The future development of CBSWs recycling processes is also discussed.The review concludes that while there is a growing need for attention in CBSWs recycling,its utilization will involve a combination of both large-scale treatment and refinement processes.The paper aims to offer references and insights for the effective utilization and environmental protection of CBSWs.Future direction will focus on the collaborative utilization of CBSWs,emphasizing on the combination of large-scale and high-value utilization.In addition,there is a need to establish a comprehensive database based on on-site production practices,explore on-site solutions to reduce transportation costs,and improve physicochemical properties during the production process.展开更多
This paper proposes that China,under the challenge of balancing its development and security,can aim for the Paris Agreement's goal to limit global warming to no more than 2℃by actively seeking carbonpeak and car...This paper proposes that China,under the challenge of balancing its development and security,can aim for the Paris Agreement's goal to limit global warming to no more than 2℃by actively seeking carbonpeak and carbon-neutrality pathways that align with China's national conditions,rather than following the idealized path toward the 1.5℃target by initially relying on extensive negative-emission technologies such as direct air carbon capture and storage(DACCS).This work suggests that pursuing a 1.5℃target is increasingly less feasible for China,as it would potentially incur 3–4 times the cost of pursuing the 2℃target.With China being likely to achieve a peak in its emissions around 2028,at about 12.8 billion tonnes of anthropogenic carbon dioxide(CO_(2)),and become carbon neutral,projected global warming levels may be less severe after the 2050s than previously estimated.This could reduce the risk potential of climate tipping points and extreme events,especially considering that the other two major carbon emitters in the world(Europe and North America)have already passed their carbon peaks.While natural carbon sinks will contribute to China's carbon neutrality efforts,they are not expected to be decisive in the transition stages.This research also addresses the growing focus on climate overshoot,tipping points,extreme events,loss and damage,and methane reductions in international climate cooperation,emphasizing the need to balance these issues with China's development,security,and fairness considerations.China's pursuit of carbon neutrality will have significant implications for global emissions scenarios,warming levels,and extreme event projections,as well as for climate change hotspots of international concern,such as climate tipping points,the climate crisis,and the notion that the world has moved from a warming to a boiling era.Possible research recommendations for global emissions scenarios based on China's 2℃target pathway are also summarized.展开更多
Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechan...Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.展开更多
High-quality standards serve as the value scale for consensus on the conversion of green benefits.Taking carbon emissions in production cycle and carbon footprints in life cycle as examples,it is arduous work to signi...High-quality standards serve as the value scale for consensus on the conversion of green benefits.Taking carbon emissions in production cycle and carbon footprints in life cycle as examples,it is arduous work to significantly improve their comparability,credibility,and manageability.At present,there are over 1,400 ISO standards in the dual carbon field.In China,there are over 1,400 relevant national standards,over 3,000 sectoral standards,over 1,900 local standards,and over 800 association standards,forming a comprehensive supporting system.展开更多
Excessive emissions of greenhouse gases such as carbon dioxide have led to global climate change,which poses one of the greatest threats to human survival in the 21st century.The urgent need to achieve carbon neutrali...Excessive emissions of greenhouse gases such as carbon dioxide have led to global climate change,which poses one of the greatest threats to human survival in the 21st century.The urgent need to achieve carbon neutrality to mitigate climatic issues has stimulated the rapid development of advanced materials and technologies for clean energy conversion and efficient storage.In recent years,a series of remarkable advances have emerged,revealing innovative materials and strategies that significantly accelerate the transition toward sus-tainable energy solutions.In this context,this special issue presents ten high-quality contributions,including seven comprehensive reviews and three original research articles[1-10],focusing on the latest ad-vances and frontier research in advanced materials and technologies toward carbon neutrality.Collectively,these works highlight the latest progress in catalytic energy conversion,photovoltaic technologies,and electrochemical energy storage,providing valuable insights to guide future efforts in the design of carbon-neutral materials and sustainable energy systems.展开更多
This paper investigates China's coal price volatility spreaders(CPVSs)from the supply side to locate the volatility source since coal price volatility may destabilize many downstream products'prices or even br...This paper investigates China's coal price volatility spreaders(CPVSs)from the supply side to locate the volatility source since coal price volatility may destabilize many downstream products'prices or even bring uncertainties to macroeconomic output.Especially in the carbon neutrality context,China's coal market is being reconstructed and responding to imbalances between supply and demand;identifying the CPVSs helps alleviate rising market instability and prevent energy-induced system risk.To achieve this objective,we explore causalities among 938 weekly coal prices reported by different coal-producing areas of China from 2006.9.4 to 2021.7.12 using the transfer entropy method.Then,coal price volatility influence is quantified to identify the CPVSs by conjointly using complex network theory and a rank aggregation method.The validity test demonstrates that the proposed hybrid method efficiently identifies the CPVSs as it correlates to many price determinants,e.g.,electricity and coal consumption and generation.The empirical results show that causalities among coal prices changed dramatically in 2016,2018,and 2020,affected by coal decapacity and carbon neutrality policies.Before 2018,coal-producing provinces with strong demand for coal and electricity,e.g.,Jiangxi,Chongqing,and Sichuan,were CPVSs;after 2019,those with comparative advantages in coal supply,e.g.,Gansu and Ningxia,were CPVSs.Overall,the coal market is unstable and sensitive to energy policy and external shocks.Policymakers and market participants are recommended to monitor and manage the CPVSs to improve energy security,avoid policy-induced instability and prevent risks caused by coal price fluctuations.展开更多
Taking China’s 2018 value-added tax(VAT)credit refund reform as an exogenous shock to improve VAT neutrality,we use a difference-in-differences approach to explore how the reform affected corporate social responsibil...Taking China’s 2018 value-added tax(VAT)credit refund reform as an exogenous shock to improve VAT neutrality,we use a difference-in-differences approach to explore how the reform affected corporate social responsibility(CSR).We find that the reform motivated firms to improve CSR performance.The reform has a“resource”effect,increasing internal funds and reducing financing costs,thereby enhancing firms’ability to undertake CSR.The reform also has a“reputation”effect,stimulating firms’willingness to engage in CSR to improve their reputations.CSR following the reform increases firm values and reduces bankruptcy risk.Our study provides fresh insights into VAT neutrality theory and is a reference for tax reform in emerging economies.展开更多
The China National Institute of Standardization(CNIS)held the Academic Meeting on 20th Anniversary of China Energy Label in Beijing on June 27.The event took place during the 35th National Energy Conservation Publicit...The China National Institute of Standardization(CNIS)held the Academic Meeting on 20th Anniversary of China Energy Label in Beijing on June 27.The event took place during the 35th National Energy Conservation Publicity Week,which ran from June 23 to 29.展开更多
Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbo...Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.展开更多
China is the largest emitter of anthropogenic CO_(2) globally,with its cities recognized as significant emission hotspots.Consequently,evaluating anthropogenic CO_(2) emissions and the carbon neutral capability(CNC)of...China is the largest emitter of anthropogenic CO_(2) globally,with its cities recognized as significant emission hotspots.Consequently,evaluating anthropogenic CO_(2) emissions and the carbon neutral capability(CNC)of Chinese cities is critical for climate change mitigation.Despite this importance,no studies to date have assessed recent and future city-scale CNCs using the top-down atmospheric inversion approach,revealing substantial knowledge gaps regarding regional CO_(2) budgets.To address these issues,this research focused on Hangzhou,a megacity known for having the highest forest cover among China’s provincial capitals,as study region.Year-round atmospheric CO_(2) concentration measurements were conducted from December 2020 to November 2021 at two sites:one urban and one suburban.These observations,along with their difference,were utilized to derive city-scale posterior anthropogenic CO_(2) emissions and to evaluate recent and future CNCs.Our key findings are as follows:(1)The manufacturing industry,energy industry and oil refineries/transformation industry were identified as the largest contributors to urban-suburban CO_(2) difference,accounting for 36.5%,21.3%,and 16.6%,respectively.Additionally,82.5%,65.2%,81.2%and 86.3%of total anthropogenic CO_(2) enhancements were attributed to emissions within Hangzhou city in winter,spring,summer and autumn,respectively.(2)The posterior annual anthropogenic CO_(2) emission for Hangzhouwas estimated at 4.65(±0.72)×10^(10) kg/a,indicating significant biases among different prior CO_(2) emission inventories.The annual biological CO_(2) sink,derived from multiple products,was estimated at-0.48(±0.16)×10^(10) kg.(3)The calculated CNC for 2021was 10.3%±3.4%,highlighting a substantial gap towards achieving full carbon neutrality.Considering potential increases in ecosystem carbon sinks due to forest age and uncertainties from climate change,it was predicted that at least 65.2%-82.6%of anthropogenic CO_(2) emissions must be reduced to achieve the goal of full carbon neutrality by year of 2060.展开更多
Against the backdrop of the global response to climate change and the United Nations'Sustainable Development Goals(SDGs),low-carbon transition and sustainable development have become essential pathways for corpora...Against the backdrop of the global response to climate change and the United Nations'Sustainable Development Goals(SDGs),low-carbon transition and sustainable development have become essential pathways for corporate growth.The transition of the energy industry,as the main source of carbon emissions,to a low-carbon model is essential for achieving global carbon neutrality goals.展开更多
Global climate change caused by geological processes is one of the main causes of the 5 global mass extinctions in geological history.Human industrialization activities have caused serious damage to the ecosystem,the ...Global climate change caused by geological processes is one of the main causes of the 5 global mass extinctions in geological history.Human industrialization activities have caused serious damage to the ecosystem,the greenhouse effect of atmospheric CO_(2)has intensified,and the living environment is facing threats and challenges.Carbon neutrality is the active action and common goal of mankind in the face of the climate change crisis,therefore,probing into its theoretical and technological connotation,scientific and technological innovation system has far-reaching significance and broad prospects.Studies indicate that(1)Carbon neutrality reflects the theoretical connotations of“energy science”and“carbon neutrality science”,including technical connotations of carbon emission reduction,zero carbon emission,negative carbon emission,and carbon trading.(2)Carbon neutrality spawns new industries such as carbon industry centering on CO_(2)capture,utilization,and storage(CCUS,or CO_(2)capture and storage CCS),and hydrogen industry centering on green hydrogen.“Gray carbon”and“black carbon”are the two application attributes of CO_(2).“Carbon+”,“Carbon−”,and“Carbon=”are three carbon-neutral products and technologies.(3)China faces three major challenges in achieving the goal of carbon neutrality:first,energy transition is large in scale and the cycle is short;Second,there are many problems in the process of energy transition,such as security uncertainties,economic utilization,and unpredictable disruptive technologies;Third,after transition,we may face new key techno-logical“bottlenecks”and“broken chain”of key mineral resources.(4)Based on current knowledge to predict the top 10 disruptive technologies and industries in the energy field:underground coal gasification,in-situ conversion process of medium and low-mature shale oil,CCUS/CCS,hydrogen energy and fuel cells,bio-photovoltaic power generation,space-based solar power generation,optical storage smart micro-grid,super energy storage,controllable nuclear fusion,wisdom energy Internet.Five strategic projects will be implemented,including energy conservation and efficiency improvement,carbon reduction and sequestration,scientific and technological innovation,emergency reserve and policy support.(5)In the future,different types of energy will have different orientations.Coal will play the role of ensuring the national energy strategy“reserve”and“guarantee the bottom line”.Petroleum will play the role of ensuring national energy security“urgent need”and the“cornerstone”of raw materials in people's livelihood.Natural gas will play the role in ensuring national energy“safety”and“best partner”of new energy.New energy will play the role in ensuring the“replacement”and“main force”of the national energy strategy.(6)Carbon neutrality is a major practice of the green industrial revolution,carbon reduction energy revolution,and ecological technology revolution,which will bring new and profound changes to human society,the environment and the economy.(7)Carbon neutrality needs to follow the four principles of“disruptive breakthroughs in technology,guarantee of energy security,realization of economic feasibility,and controllable social stability”.We should rely on technological innovation and management changes to ensure the realization of national energy“independence”and carbon neutrality goal,and make China's contribution to the construction of a livable earth,green development,and ecological civilization.展开更多
The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studie...The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studies that systematically identify opportunities to achieve carbon neutrality.To address this gap,this study comprehensively collates and investigates 1105 published research studies regarding carbon peaking and carbon neutrality.In doing so,the principles of development in this area are quantitively analyzed from a space–time perspective.At the same time,this study traces shifts and alterations in research hotspots.This systematic review summarizes the priorities and standpoints of key industries on carbon peaking and carbon neutrality.Furthermore,with an emphasis on five key management science topics,the scientific concerns and strategic demands for these two carbon emission-reduction goals are clarified.The paper ends with theoretical insights on and practical countermeasures for actions,priority tasks,and policy measures that will enable China to achieve a carbon-neutral future.This study provides a complete picture of the research status on carbon peaking and carbon neutrality,as well as the research directions worth investigating in this field,which are crucial to the formulation of carbon peak and carbon neutrality policies.展开更多
Currently,more than 86%of global energy consumption is still mainly dependent on traditional fossil fuels,which causes resource scarcity and even emission of high amounts of carbon dioxide(CO_(2)),resulting in a sever...Currently,more than 86%of global energy consumption is still mainly dependent on traditional fossil fuels,which causes resource scarcity and even emission of high amounts of carbon dioxide(CO_(2)),resulting in a severe“Greenhouse effect.”Considering this situation,the concept of“carbon neutrality”has been put forward by 125 countries one after another.To achieve the goals of“carbon neutrality,”two main strategies to reduce CO_(2) emissions and develop sustainable clean energy can be adopted.Notably,these are crucial for the synthesis of advanced single-atom catalysts(SACs)for energyrelated applications.In this review,we highlight unique SACs for conversion of CO_(2) into high-efficiency carbon energy,for example,through photocatalytic,electrocatalytic,and thermal catalytic hydrogenation technologies,to convert CO_(2) into hydrocarbon fuels(CO,CH_(4),HCOOH,CH_(3)OH,and multicarbon[C_(2+)]products).In addition,we introduce advanced energy conversion technologies and devices to replace traditional polluting fossil fuels,such as photocatalytic and electrocatalytic water splitting to produce hydrogen energy and a high-efficiency oxygen reduction reaction(ORR)for fuel cells.Impressively,several representative examples of SACs(including d-,ds-,p-,and f-blocks)for CO_(2) conversion,water splitting to H2,and ORR are discussed to describe synthesis methods,characterization,and corresponding catalytic activity.Finally,this review concludes with a description of the challenges and outlooks for future applications of SACs in contributing toward carbon neutrality.展开更多
The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adopt...The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adoption of smart energy technology and implementation of electricity futures and spot marketization,which enabled the achievement of multiple energy spatial–temporal complementarities and overall grid balance through energy conversion and reconversion technologies.While China can draw from Germany’s experience to inform its own energy transition efforts,its 11-fold higher annual electricity consumption requires a distinct approach.We recommend a clean energy system based on smart sector coupling(ENSYSCO)as a suitable pathway for achieving sustainable energy in China,given that renewable energy is expected to guarantee 85%of China’s energy production by 2060,requiring significant future electricity storage capacity.Nonetheless,renewable energy storage remains a significant challenge.We propose four large-scale underground energy storage methods based on ENSYSCO to address this challenge,while considering China’s national conditions.These proposals have culminated in pilot projects for large-scale underground energy storage in China,which we believe is a necessary choice for achieving carbon neutrality in China and enabling efficient and safe grid integration of renewable energy within the framework of ENSYSCO.展开更多
Climate change is the greatest environmental threat to humans and the planet in the 21st century.Global anthropogenic greenhouse gas emissions are one of the main causes of the increasing number of extreme climate eve...Climate change is the greatest environmental threat to humans and the planet in the 21st century.Global anthropogenic greenhouse gas emissions are one of the main causes of the increasing number of extreme climate events.Cumulative carbon dioxide(CO_(2))emissions showed a linear relationship with cumulative temperature rise since the pre-industrial stage,and this accounts for approximately 80%of the total anthropogenic greenhouse gases.Therefore,accurate and reliable carbon emission data are the foundation and scientific basis for most emission reduction policymaking and target setting.Currently,China has made clear the ambitious goal of achieving the peak of carbon emissions by 2030 and achieving carbon neutrality by 2060.The development of a finer-grained spatiotemporal carbon emission database is urgently needed to achieve more accurate carbon emission monitoring for continuous implementation and the iterative improvement of emission reduction policies.Near-real-time carbon emission monitoring is not only a major national demand but also a scientific question at the frontier of this discipline.This article reviews existing annual-based carbon accounting methods,with a focus on the newly developed real-time carbon emission technology and its current application trends.We also present a framework for the latest near-real-time carbon emission accounting technology that can be widely used.The development of relevant data and methods will provide strong database support to the policymaking for China’s“carbon neutrality”strategy.Finally,this article provides an outlook on the future of real-time carbon emission monitoring technology.展开更多
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev...Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.展开更多
Greenhouse gas(GHG)emissions related to human activities have significantly caused climate change since the Industrial Revolution.China aims to achieve its carbon emission peak before 2030 and carbon neutrality before...Greenhouse gas(GHG)emissions related to human activities have significantly caused climate change since the Industrial Revolution.China aims to achieve its carbon emission peak before 2030 and carbon neutrality before 2060.Accordingly,this paper reviews and discusses technical strategies to achieve the“dual carbon”targets in China’s metal mines.First,global carbon emissions and emission intensities from metal mining industries are analyzed.The metal mining status and carbon emissions in China are then examined.Furthermore,advanced technologies for carbon mitigation and carbon sequestration in metal mines are reviewed.Finally,a technical roadmap for achieving carbon neutrality in China’s metal mines is proposed.Findings show that some international mining giants have already achieved their carbon reduction targets and planned to achieve carbon neutrality by 2050.Moreover,improving mining efficiency by developing advanced technologies and replacing fossil fuel with renewable energy are two key approaches in reducing GHG emissions.Green mines can significantly benefit from the carbon neutrality process for metal mines through the carbon absorption of reclamation vegetations.Geothermal energy extraction from operating and abandoned metal mines is a promising technology for providing clean energy and contributing to the carbon neutrality target of China’s metal mines.Carbon sequestration in mine backfills and tailings through mineral carbonation has the potential to permanently and safely store carbon dioxide,which can eventually make the metal mining industry carbon neutral or even carbon negative.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
基金supported by the following:“National Natural Science Foundation of China”(22478231)“Natural Science Foundation of Henan”(242300421449)“Fundamental Research Program of Shanxi Province”(202403021221011).
文摘Coal-based soild wastes(CBSWs)are industrial byproducts that can be harmful to the environment.The exploitation and utilization of CBsWs offer societal advantages such as resource conservation,pollution reduction,and cost-effective production.However,environmentally sustainable management remains a worldwide challenge due to the substantial production volume and limited disposal capacity of CBSWs.The physicochemical properties and utilization of CBSWs are summarized,including fly ash,coal gangue and coal gasification slag.It also presents the current global applications status of CBSWs resources and examines market supply and demand.Subsequently,the paper provides an overview of studies on ways to utilise CBSWs,highlighting the primary avenues of CBSWs resource utilization which are mainly from the fields of chemical materials,metallurgy and agriculture.Furthermore,a comparative evaluation of the various methods for CBSWs resource recovery is conducted,outlining their respective advantages and disadvantages.The future development of CBSWs recycling processes is also discussed.The review concludes that while there is a growing need for attention in CBSWs recycling,its utilization will involve a combination of both large-scale treatment and refinement processes.The paper aims to offer references and insights for the effective utilization and environmental protection of CBSWs.Future direction will focus on the collaborative utilization of CBSWs,emphasizing on the combination of large-scale and high-value utilization.In addition,there is a need to establish a comprehensive database based on on-site production practices,explore on-site solutions to reduce transportation costs,and improve physicochemical properties during the production process.
基金supported by the top-level design of the National Natural Science Foundation of China(NSFC)Major Project“Realization of optimal carbon neutral pathway and coupling of multi-scale interaction patterns of natural-social systems in China”(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘This paper proposes that China,under the challenge of balancing its development and security,can aim for the Paris Agreement's goal to limit global warming to no more than 2℃by actively seeking carbonpeak and carbon-neutrality pathways that align with China's national conditions,rather than following the idealized path toward the 1.5℃target by initially relying on extensive negative-emission technologies such as direct air carbon capture and storage(DACCS).This work suggests that pursuing a 1.5℃target is increasingly less feasible for China,as it would potentially incur 3–4 times the cost of pursuing the 2℃target.With China being likely to achieve a peak in its emissions around 2028,at about 12.8 billion tonnes of anthropogenic carbon dioxide(CO_(2)),and become carbon neutral,projected global warming levels may be less severe after the 2050s than previously estimated.This could reduce the risk potential of climate tipping points and extreme events,especially considering that the other two major carbon emitters in the world(Europe and North America)have already passed their carbon peaks.While natural carbon sinks will contribute to China's carbon neutrality efforts,they are not expected to be decisive in the transition stages.This research also addresses the growing focus on climate overshoot,tipping points,extreme events,loss and damage,and methane reductions in international climate cooperation,emphasizing the need to balance these issues with China's development,security,and fairness considerations.China's pursuit of carbon neutrality will have significant implications for global emissions scenarios,warming levels,and extreme event projections,as well as for climate change hotspots of international concern,such as climate tipping points,the climate crisis,and the notion that the world has moved from a warming to a boiling era.Possible research recommendations for global emissions scenarios based on China's 2℃target pathway are also summarized.
文摘Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.
文摘High-quality standards serve as the value scale for consensus on the conversion of green benefits.Taking carbon emissions in production cycle and carbon footprints in life cycle as examples,it is arduous work to significantly improve their comparability,credibility,and manageability.At present,there are over 1,400 ISO standards in the dual carbon field.In China,there are over 1,400 relevant national standards,over 3,000 sectoral standards,over 1,900 local standards,and over 800 association standards,forming a comprehensive supporting system.
文摘Excessive emissions of greenhouse gases such as carbon dioxide have led to global climate change,which poses one of the greatest threats to human survival in the 21st century.The urgent need to achieve carbon neutrality to mitigate climatic issues has stimulated the rapid development of advanced materials and technologies for clean energy conversion and efficient storage.In recent years,a series of remarkable advances have emerged,revealing innovative materials and strategies that significantly accelerate the transition toward sus-tainable energy solutions.In this context,this special issue presents ten high-quality contributions,including seven comprehensive reviews and three original research articles[1-10],focusing on the latest ad-vances and frontier research in advanced materials and technologies toward carbon neutrality.Collectively,these works highlight the latest progress in catalytic energy conversion,photovoltaic technologies,and electrochemical energy storage,providing valuable insights to guide future efforts in the design of carbon-neutral materials and sustainable energy systems.
基金supported by the National Natural Science Foundation of China(Grant No.72401207 and 42101300)Beijing Municipal Education Commission,China(Grant No.SM202110038001).
文摘This paper investigates China's coal price volatility spreaders(CPVSs)from the supply side to locate the volatility source since coal price volatility may destabilize many downstream products'prices or even bring uncertainties to macroeconomic output.Especially in the carbon neutrality context,China's coal market is being reconstructed and responding to imbalances between supply and demand;identifying the CPVSs helps alleviate rising market instability and prevent energy-induced system risk.To achieve this objective,we explore causalities among 938 weekly coal prices reported by different coal-producing areas of China from 2006.9.4 to 2021.7.12 using the transfer entropy method.Then,coal price volatility influence is quantified to identify the CPVSs by conjointly using complex network theory and a rank aggregation method.The validity test demonstrates that the proposed hybrid method efficiently identifies the CPVSs as it correlates to many price determinants,e.g.,electricity and coal consumption and generation.The empirical results show that causalities among coal prices changed dramatically in 2016,2018,and 2020,affected by coal decapacity and carbon neutrality policies.Before 2018,coal-producing provinces with strong demand for coal and electricity,e.g.,Jiangxi,Chongqing,and Sichuan,were CPVSs;after 2019,those with comparative advantages in coal supply,e.g.,Gansu and Ningxia,were CPVSs.Overall,the coal market is unstable and sensitive to energy policy and external shocks.Policymakers and market participants are recommended to monitor and manage the CPVSs to improve energy security,avoid policy-induced instability and prevent risks caused by coal price fluctuations.
基金Scientific Research Project of Higher Education Institutions in Hebei Province in 2025“Research on Government Procurement-Driven Green Governance of Hebei’s Manufacturing Industry”(Project No.:QN2025662)Social Science Fund of Hebei Province in 2024“Research on Informal Environmental Regulation Promoting Green Development of Hebei’s Manufacturing Industry”(Project No.:HB24GL036)Hebei Provincial Social Science Development Research Project,“Study on the Constraints and Implementation Paths of the Transformation from Dual Control of Energy Consumption to Dual Control of Carbon Emissions in Hebei Province”(Project No.:HBSKFZ25QN199)。
文摘Taking China’s 2018 value-added tax(VAT)credit refund reform as an exogenous shock to improve VAT neutrality,we use a difference-in-differences approach to explore how the reform affected corporate social responsibility(CSR).We find that the reform motivated firms to improve CSR performance.The reform has a“resource”effect,increasing internal funds and reducing financing costs,thereby enhancing firms’ability to undertake CSR.The reform also has a“reputation”effect,stimulating firms’willingness to engage in CSR to improve their reputations.CSR following the reform increases firm values and reduces bankruptcy risk.Our study provides fresh insights into VAT neutrality theory and is a reference for tax reform in emerging economies.
文摘The China National Institute of Standardization(CNIS)held the Academic Meeting on 20th Anniversary of China Energy Label in Beijing on June 27.The event took place during the 35th National Energy Conservation Publicity Week,which ran from June 23 to 29.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Special Project(2021ZZ01-05)。
文摘Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.
基金supported by the National Natural Science Foundation of China(Nos.42475125,42105117,42021004 and 41975143)the National Key R&D Program of China(Nos.2019YFA0607202 and 2020YFA0607501)+4 种基金Jiangsu Science Foundation for Distinguished Young Scholar(No.BK20220055)the 333 Project of Jiangsu Province(No.BRA2017402)the R&D Foundation of Jiangsu Province,China(No.BK20220020)Zhejiang Provincial Basic Public Welfare Research Project(No.LGF22D050004)the Key Laboratory of Ecosystem Carbon Source and Sink,China Meteorological Administration(ECSSCMA).
文摘China is the largest emitter of anthropogenic CO_(2) globally,with its cities recognized as significant emission hotspots.Consequently,evaluating anthropogenic CO_(2) emissions and the carbon neutral capability(CNC)of Chinese cities is critical for climate change mitigation.Despite this importance,no studies to date have assessed recent and future city-scale CNCs using the top-down atmospheric inversion approach,revealing substantial knowledge gaps regarding regional CO_(2) budgets.To address these issues,this research focused on Hangzhou,a megacity known for having the highest forest cover among China’s provincial capitals,as study region.Year-round atmospheric CO_(2) concentration measurements were conducted from December 2020 to November 2021 at two sites:one urban and one suburban.These observations,along with their difference,were utilized to derive city-scale posterior anthropogenic CO_(2) emissions and to evaluate recent and future CNCs.Our key findings are as follows:(1)The manufacturing industry,energy industry and oil refineries/transformation industry were identified as the largest contributors to urban-suburban CO_(2) difference,accounting for 36.5%,21.3%,and 16.6%,respectively.Additionally,82.5%,65.2%,81.2%and 86.3%of total anthropogenic CO_(2) enhancements were attributed to emissions within Hangzhou city in winter,spring,summer and autumn,respectively.(2)The posterior annual anthropogenic CO_(2) emission for Hangzhouwas estimated at 4.65(±0.72)×10^(10) kg/a,indicating significant biases among different prior CO_(2) emission inventories.The annual biological CO_(2) sink,derived from multiple products,was estimated at-0.48(±0.16)×10^(10) kg.(3)The calculated CNC for 2021was 10.3%±3.4%,highlighting a substantial gap towards achieving full carbon neutrality.Considering potential increases in ecosystem carbon sinks due to forest age and uncertainties from climate change,it was predicted that at least 65.2%-82.6%of anthropogenic CO_(2) emissions must be reduced to achieve the goal of full carbon neutrality by year of 2060.
文摘Against the backdrop of the global response to climate change and the United Nations'Sustainable Development Goals(SDGs),low-carbon transition and sustainable development have become essential pathways for corporate growth.The transition of the energy industry,as the main source of carbon emissions,to a low-carbon model is essential for achieving global carbon neutrality goals.
文摘Global climate change caused by geological processes is one of the main causes of the 5 global mass extinctions in geological history.Human industrialization activities have caused serious damage to the ecosystem,the greenhouse effect of atmospheric CO_(2)has intensified,and the living environment is facing threats and challenges.Carbon neutrality is the active action and common goal of mankind in the face of the climate change crisis,therefore,probing into its theoretical and technological connotation,scientific and technological innovation system has far-reaching significance and broad prospects.Studies indicate that(1)Carbon neutrality reflects the theoretical connotations of“energy science”and“carbon neutrality science”,including technical connotations of carbon emission reduction,zero carbon emission,negative carbon emission,and carbon trading.(2)Carbon neutrality spawns new industries such as carbon industry centering on CO_(2)capture,utilization,and storage(CCUS,or CO_(2)capture and storage CCS),and hydrogen industry centering on green hydrogen.“Gray carbon”and“black carbon”are the two application attributes of CO_(2).“Carbon+”,“Carbon−”,and“Carbon=”are three carbon-neutral products and technologies.(3)China faces three major challenges in achieving the goal of carbon neutrality:first,energy transition is large in scale and the cycle is short;Second,there are many problems in the process of energy transition,such as security uncertainties,economic utilization,and unpredictable disruptive technologies;Third,after transition,we may face new key techno-logical“bottlenecks”and“broken chain”of key mineral resources.(4)Based on current knowledge to predict the top 10 disruptive technologies and industries in the energy field:underground coal gasification,in-situ conversion process of medium and low-mature shale oil,CCUS/CCS,hydrogen energy and fuel cells,bio-photovoltaic power generation,space-based solar power generation,optical storage smart micro-grid,super energy storage,controllable nuclear fusion,wisdom energy Internet.Five strategic projects will be implemented,including energy conservation and efficiency improvement,carbon reduction and sequestration,scientific and technological innovation,emergency reserve and policy support.(5)In the future,different types of energy will have different orientations.Coal will play the role of ensuring the national energy strategy“reserve”and“guarantee the bottom line”.Petroleum will play the role of ensuring national energy security“urgent need”and the“cornerstone”of raw materials in people's livelihood.Natural gas will play the role in ensuring national energy“safety”and“best partner”of new energy.New energy will play the role in ensuring the“replacement”and“main force”of the national energy strategy.(6)Carbon neutrality is a major practice of the green industrial revolution,carbon reduction energy revolution,and ecological technology revolution,which will bring new and profound changes to human society,the environment and the economy.(7)Carbon neutrality needs to follow the four principles of“disruptive breakthroughs in technology,guarantee of energy security,realization of economic feasibility,and controllable social stability”.We should rely on technological innovation and management changes to ensure the realization of national energy“independence”and carbon neutrality goal,and make China's contribution to the construction of a livable earth,green development,and ecological civilization.
基金the National Natural Science Foundation of China(71521002,72104025,and 72004011)China’s National Key Research and Development(R&D)Program(2016YFA0602603)China Post-doctoral Science Foundation(2021M690014)。
文摘The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studies that systematically identify opportunities to achieve carbon neutrality.To address this gap,this study comprehensively collates and investigates 1105 published research studies regarding carbon peaking and carbon neutrality.In doing so,the principles of development in this area are quantitively analyzed from a space–time perspective.At the same time,this study traces shifts and alterations in research hotspots.This systematic review summarizes the priorities and standpoints of key industries on carbon peaking and carbon neutrality.Furthermore,with an emphasis on five key management science topics,the scientific concerns and strategic demands for these two carbon emission-reduction goals are clarified.The paper ends with theoretical insights on and practical countermeasures for actions,priority tasks,and policy measures that will enable China to achieve a carbon-neutral future.This study provides a complete picture of the research status on carbon peaking and carbon neutrality,as well as the research directions worth investigating in this field,which are crucial to the formulation of carbon peak and carbon neutrality policies.
基金National Key R&D Program of China,Grant/Award Number:2018YFA0702003National Natural Science Foundation of China,Grant/Award Numbers:21890383,21871159Science and Technology Key Project of Guangdong Province of China,Grant/Award Number:2020B010188002。
文摘Currently,more than 86%of global energy consumption is still mainly dependent on traditional fossil fuels,which causes resource scarcity and even emission of high amounts of carbon dioxide(CO_(2)),resulting in a severe“Greenhouse effect.”Considering this situation,the concept of“carbon neutrality”has been put forward by 125 countries one after another.To achieve the goals of“carbon neutrality,”two main strategies to reduce CO_(2) emissions and develop sustainable clean energy can be adopted.Notably,these are crucial for the synthesis of advanced single-atom catalysts(SACs)for energyrelated applications.In this review,we highlight unique SACs for conversion of CO_(2) into high-efficiency carbon energy,for example,through photocatalytic,electrocatalytic,and thermal catalytic hydrogenation technologies,to convert CO_(2) into hydrocarbon fuels(CO,CH_(4),HCOOH,CH_(3)OH,and multicarbon[C_(2+)]products).In addition,we introduce advanced energy conversion technologies and devices to replace traditional polluting fossil fuels,such as photocatalytic and electrocatalytic water splitting to produce hydrogen energy and a high-efficiency oxygen reduction reaction(ORR)for fuel cells.Impressively,several representative examples of SACs(including d-,ds-,p-,and f-blocks)for CO_(2) conversion,water splitting to H2,and ORR are discussed to describe synthesis methods,characterization,and corresponding catalytic activity.Finally,this review concludes with a description of the challenges and outlooks for future applications of SACs in contributing toward carbon neutrality.
基金Henan Institute for Chinese Development Strategy of Engineering&Technology(No.2022HENZDA02)the Science&Technology Department of Sichuan Province(No.2021YFH0010)。
文摘The global energy transition is a widespread phenomenon that requires international exchange of experiences and mutual learning.Germany’s success in its first phase of energy transition can be attributed to its adoption of smart energy technology and implementation of electricity futures and spot marketization,which enabled the achievement of multiple energy spatial–temporal complementarities and overall grid balance through energy conversion and reconversion technologies.While China can draw from Germany’s experience to inform its own energy transition efforts,its 11-fold higher annual electricity consumption requires a distinct approach.We recommend a clean energy system based on smart sector coupling(ENSYSCO)as a suitable pathway for achieving sustainable energy in China,given that renewable energy is expected to guarantee 85%of China’s energy production by 2060,requiring significant future electricity storage capacity.Nonetheless,renewable energy storage remains a significant challenge.We propose four large-scale underground energy storage methods based on ENSYSCO to address this challenge,while considering China’s national conditions.These proposals have culminated in pilot projects for large-scale underground energy storage in China,which we believe is a necessary choice for achieving carbon neutrality in China and enabling efficient and safe grid integration of renewable energy within the framework of ENSYSCO.
基金financially supported by the National Natural Science Foundation of China (71874097 and 41921005)Beijing Natural Science Foundation (JQ19032)+1 种基金the Qiu Shi Science & Technologies Foundationthe Shenzhen Municipal Science and Technology Commission College Stability Support Project (WDZC20200819173345002)
文摘Climate change is the greatest environmental threat to humans and the planet in the 21st century.Global anthropogenic greenhouse gas emissions are one of the main causes of the increasing number of extreme climate events.Cumulative carbon dioxide(CO_(2))emissions showed a linear relationship with cumulative temperature rise since the pre-industrial stage,and this accounts for approximately 80%of the total anthropogenic greenhouse gases.Therefore,accurate and reliable carbon emission data are the foundation and scientific basis for most emission reduction policymaking and target setting.Currently,China has made clear the ambitious goal of achieving the peak of carbon emissions by 2030 and achieving carbon neutrality by 2060.The development of a finer-grained spatiotemporal carbon emission database is urgently needed to achieve more accurate carbon emission monitoring for continuous implementation and the iterative improvement of emission reduction policies.Near-real-time carbon emission monitoring is not only a major national demand but also a scientific question at the frontier of this discipline.This article reviews existing annual-based carbon accounting methods,with a focus on the newly developed real-time carbon emission technology and its current application trends.We also present a framework for the latest near-real-time carbon emission accounting technology that can be widely used.The development of relevant data and methods will provide strong database support to the policymaking for China’s“carbon neutrality”strategy.Finally,this article provides an outlook on the future of real-time carbon emission monitoring technology.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)by the Science&Technology Department of Sichuan Province Project(Grant No.2021YFH0010).
文摘Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
基金supported by the Chinese Academy of Engineering(No.2019-XZ-16)National Natural Science Foundation of China(No.L1824042)Fundamental Research Funds for the Central Universities,USTB(No.FRFIDRY-20-032)。
文摘Greenhouse gas(GHG)emissions related to human activities have significantly caused climate change since the Industrial Revolution.China aims to achieve its carbon emission peak before 2030 and carbon neutrality before 2060.Accordingly,this paper reviews and discusses technical strategies to achieve the“dual carbon”targets in China’s metal mines.First,global carbon emissions and emission intensities from metal mining industries are analyzed.The metal mining status and carbon emissions in China are then examined.Furthermore,advanced technologies for carbon mitigation and carbon sequestration in metal mines are reviewed.Finally,a technical roadmap for achieving carbon neutrality in China’s metal mines is proposed.Findings show that some international mining giants have already achieved their carbon reduction targets and planned to achieve carbon neutrality by 2050.Moreover,improving mining efficiency by developing advanced technologies and replacing fossil fuel with renewable energy are two key approaches in reducing GHG emissions.Green mines can significantly benefit from the carbon neutrality process for metal mines through the carbon absorption of reclamation vegetations.Geothermal energy extraction from operating and abandoned metal mines is a promising technology for providing clean energy and contributing to the carbon neutrality target of China’s metal mines.Carbon sequestration in mine backfills and tailings through mineral carbonation has the potential to permanently and safely store carbon dioxide,which can eventually make the metal mining industry carbon neutral or even carbon negative.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.