期刊文献+
共找到22,086篇文章
< 1 2 250 >
每页显示 20 50 100
Potential and value of rescuing dying neurons
1
作者 Wenting You Tos T.J.M.Berendschot +3 位作者 Birke J.Benedikter Carroll A.B.Webers Chris P.M.Reutelingsperger Theo G.M.F.Gorgels 《Neural Regeneration Research》 2026年第3期1013-1022,共10页
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg... Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases. 展开更多
关键词 APOPTOSIS dying neurons neuronal recovery neurorescue reversible cell death process
暂未订购
Tracing motor neurons and primary sensory afferents of the monkey spinal cord with cholera toxin subunit B
2
作者 Ziyu He Zhixian Liu +4 位作者 Wenjie Xu Ruoying Zhang Shu Fan Wei Wang Xiaolong Zheng 《Neural Regeneration Research》 2026年第5期2040-2049,共10页
Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord ... Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord are lacking.Here,by injecting the cholera toxin B subunit into the sciatic nerve of a rhesus monkey,we successfully labeled the motor neurons and primary sensory afferents in the lumbar and sacralspinal cord.Labeled alpha motor neurons were located in lamina IX of the L6–S1 segments,which innervate both flexors and extensors.The labeled primary sensory afferents were mainly myelinated Aβfibers that terminated mostly in laminae I and II of the L4–L7 segments.Together with the labeled proprioceptive afferents,the primary sensory afferents formed excitatory synapses with multiple types of spinal neurons.In summary,our methods successfully traced neuronal connections in the monkey spinal cord and can be used in spinal cord studies when nonhuman primates are used. 展开更多
关键词 cholera toxin subunit B INTERneuron Macaca Mulatta MONKEY motor neuron neuron tracing primary sensory afferents rhesus macaque sciatic nerve spinal cord
暂未订购
RAF1 in AgRP neurons involved in the regulation of energy metabolism via the MAPK signaling pathway
3
作者 Yuqian Chen Lianci Ren +5 位作者 Xinyi Xu Zhenning Sun Mingxi Dai Yin Li Xiang Ma Juxue Li 《Journal of Biomedical Research》 2026年第1期45-62,共18页
V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating ene... V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases. 展开更多
关键词 RAF1 AgRP neurons MAPK signaling pathway CREB OBESITY
暂未订购
Epilepsy therapy beyond neurons: Unveiling astrocytes as cellular targets
4
作者 Yuncan Chen Jiayi Hu +5 位作者 Ying Zhang Lulu Peng Xiaoyu Li Cong Li Xunyi Wu Cong Wang 《Neural Regeneration Research》 2026年第1期23-38,共16页
Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the ... Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies. Astrocytes, the largest group of nonneuronal cells in the central nervous system, play several crucial roles in maintaining ionic and energy metabolic homeostasis in neurons, regulating neurotransmitter levels, and modulating synaptic plasticity. This article briefly reviews the critical role of astrocytes in maintaining balance within the central nervous system. Building on previous research, we discuss how astrocyte dysfunction contributes to the onset and progression of epilepsy through four key aspects: the imbalance between excitatory and inhibitory neuronal signaling, dysregulation of metabolic homeostasis in the neuronal microenvironment, neuroinflammation, and the formation of abnormal neural circuits. We summarize relevant basic research conducted over the past 5 years that has focused on modulating astrocytes as a therapeutic approach for epilepsy. We categorize the therapeutic targets proposed by these studies into four areas: restoration of the excitation–inhibition balance, reestablishment of metabolic homeostasis, modulation of immune and inflammatory responses, and reconstruction of abnormal neural circuits. These targets correspond to the pathophysiological mechanisms by which astrocytes contribute to epilepsy. Additionally, we need to consider the potential challenges and limitations of translating these identified therapeutic targets into clinical treatments. These limitations arise from interspecies differences between humans and animal models, as well as the complex comorbidities associated with epilepsy in humans. We also highlight valuable future research directions worth exploring in the treatment of epilepsy and the regulation of astrocytes, such as gene therapy and imaging strategies. The findings presented in this review may help open new therapeutic avenues for patients with drugresistant epilepsy and for those suffering from other central nervous system disorders associated with astrocytic dysfunction. 展开更多
关键词 ASTROCYTE cellular microenvironment drug resistance EPILEPSY EXCITABILITY homeostasis metabolism neural networks NEUROINFLAMMATION neuron
暂未订购
Secretory autophagy in neurons:More than throwing out the trash?
5
作者 Alexander Veh Patrick Lüningschrör 《Neural Regeneration Research》 2026年第3期1108-1109,共2页
Autophagy is well-known for delivering cargo materials to lysosomes for proteolytic digestion.Recently,autophagy has emerged as a key mechanism in unconventional protein secretion(UPS).This perspective introduces unco... Autophagy is well-known for delivering cargo materials to lysosomes for proteolytic digestion.Recently,autophagy has emerged as a key mechanism in unconventional protein secretion(UPS).This perspective introduces unconventional secretion pathways,focusing on secretory autophagy and its role in secreting protein aggregates associated with neurodegenerative disorders.We also explore additional neuronal functions of secretory autophagy beyond the release of protein aggregates.We propose autophagosomes as transport organelles that deliver cargo material directly from the endoplasmatic reticulum(ER)to the plasma membrane rather than solely to lysosomes. 展开更多
关键词 proteolytic digestionrecentlyautophagy secreting protein aggregates neurons protein aggregateswe delivering cargo materials unconventional protein secretion unconventional protein secretion ups secretory autophagy
暂未订购
NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation 被引量:4
6
作者 Zhihao Lin Changzhou Ying +6 位作者 Xiaoli Si Naijia Xue Yi Liu Ran Zheng Ying Chen Jiali Pu Baorong Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2038-2052,共15页
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati... Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease. 展开更多
关键词 dopaminergic neuron ferroptosis NADPH oxidase 4(NOX4) NEUROINFLAMMATION Parkinson's disease
暂未订购
Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion 被引量:1
7
作者 Lu Guan Mengting Qiu +10 位作者 Na Li Zhengxiang Zhou Ru Ye Liyan Zhong Yashuang Xu Junhui Ren Yi Liang Xiaomei Shao Jianqiao Fang Junfan Fang Junying Du 《Neural Regeneration Research》 SCIE CAS 2025年第10期2838-2854,共17页
Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairme... Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development. 展开更多
关键词 anterior cingulate cortex ANXIETY chronic pain circuit communication COMORBIDITY depression gamma-aminobutyric acidergic neurons parvalbumin neurons synaptic transmission
暂未订购
Transforming growth factor-beta 1 enhances discharge activity of cortical neurons 被引量:1
8
作者 Zhihui Ren Tian Li +5 位作者 Xueer Liu Zelin Zhang Xiaoxuan Chen Weiqiang Chen Kangsheng Li Jiangtao Sheng 《Neural Regeneration Research》 SCIE CAS 2025年第2期548-556,共9页
Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may de... Transforming growth factor-beta 1(TGF-β1)has been extensively studied for its pleiotropic effects on central nervous system diseases.The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved.Voltage-gated sodium channels(VGSCs)are essential ion channels for the generation of action potentials in neurons,and are involved in various neuroexcitation-related diseases.However,the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear.In this study,we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice.We found that TGF-β1 increased VGSC current density in a dose-and time-dependent manner,which was attributable to the upregulation of Nav1.3 expression.Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase(PD98059),p38 mitogen-activated protein kinase(SB203580),and Jun NH2-terminal kinase 1/2 inhibitor(SP600125).Interestingly,TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons.These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway,which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions.Thus,this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system. 展开更多
关键词 central nervous system cortical neurons ERK firing properties JNK Nav1.3 p38 transforming growth factor-beta 1 traumatic brain injury voltage-gated sodium currents
暂未订购
Electropolymerized dopamine-based memristors using threshold switching behaviors for artificial current-activated spiking neurons 被引量:1
9
作者 Bowen Zhong Xiaokun Qin +4 位作者 Zhexin Li Yiqiang Zheng Lingchen Liu Zheng Lou Lili Wang 《Journal of Semiconductors》 2025年第2期98-103,共6页
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us... Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems. 展开更多
关键词 ELECTROPOLYMERIZATION POLYDOPAMINE MEMRISTOR threshold switching spiking voltage artificial neuron
在线阅读 下载PDF
Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease
10
作者 Ling-Xiao Yi Hui Ren Woon +3 位作者 Genevieve Saw Li Zeng Eng King Tan Zhi Dong Zhou 《Neural Regeneration Research》 SCIE CAS 2025年第11期3193-3206,共14页
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed patho... The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease. 展开更多
关键词 dopaminergic neurons induced pluripotent stem cells Parkinson's disease stem cell approaches
暂未订购
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
11
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 Artificial intelligence Emerging devices Artificial sensory neurons Spiking neural networks Neuromorphic sensing
在线阅读 下载PDF
Insular cortex sends excitatory projections to GABAergic neurons in the nucleus tractus solitarii in rats
12
作者 CHEN Yingbiao SHI Zhen +3 位作者 YIN Junbin BAI Yang FAN Qitong LI Yunqing 《神经解剖学杂志》 北大核心 2025年第4期411-421,共11页
Objective:To anatomically and phenotypically characterize the insular cortex(IC)-nucleus tractus soli-tari(NTS)neural pathway.Methods:Adult male Sprague-Dawley rats were divided into three experimental cohorts for neu... Objective:To anatomically and phenotypically characterize the insular cortex(IC)-nucleus tractus soli-tari(NTS)neural pathway.Methods:Adult male Sprague-Dawley rats were divided into three experimental cohorts for neural circuit tracing.Anterograde labeling was achieved by injecting anterograde self-complementary adeno-associated viruses(scAAVs)into the IC.Retrograde tracing involved NTS injections of either retrograde scAAVs or FluoroGold(FG),combined with immunofluorescence histochemical staining to identify IC-originating projection neurons.For postsynaptic neurochemical phenotype characterization,IC was injected with AAV2/1-CaMKII-Cre,while a mixture of AAV2/9-Syn-DIO-mCherry and AAV2/9-VGAT1-EGFP was injected into the NTS.The rats were allowed to survive for one week following scAAVs or FG injection or four weeks after recombinase-dependent systems injection.Then the rats were sacrificed,and serial brain sections were prepared for immunofluorescence histochemical staining(brain section containing FG)and subsequent fluorescence/confocal microscopic analysis.Results:(1)Anterograde viral tracing re-vealed dense axonal terminals from the IC projecting to the medial subnucleus of the NTS,while retrograde tracing re-vealed that IC neurons projecting to the NTS were predominantly localized within the dysgranular layer;(2)IC-NTS projection neurons were exclusive glutamatergic(100%,n=3);(3)NTS neurons receiving IC inputs were mainly lo-calized in the medial subnucleus,and were predominantly GABAergic(79.8±3.2%,n=3).Conclusion:The pres-ent results indicate that a descending pathway from excitatory neurons of the IC terminates onto inhibitory neurons of the NTS,which might represent a potential neuromodulatory target for visceral pain disorders. 展开更多
关键词 nucleus tractus solitari(NTS) insular cortex(IC) anterograde transmonosynaptsis glutamatergic neurons GABAergic neurons RAT
原文传递
Pathological Networks Involving Dysmorphic Neurons in Type ⅡFocal Cortical Dysplasia 被引量:2
13
作者 Yijie Shao Qianqian Ge +13 位作者 Jiachao Yang Mi Wang Yu Zhou Jin-Xin Guo Mengyue Zhu Jiachen Shi Yiqi Hu Li Shen Zhong Chen Xiao-Ming Li Jun-Ming Zhu Jianmin Zhang Shumin Duan Jiadong Chen 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第9期1007-1024,共18页
Focal cortical dysplasia(FCD)is one of the most common causes of drug-resistant epilepsy.Dysmorphic neurons are the major histopathological feature of typeⅡFCD,but their role in seizure genesis in FCD is unclear.Here... Focal cortical dysplasia(FCD)is one of the most common causes of drug-resistant epilepsy.Dysmorphic neurons are the major histopathological feature of typeⅡFCD,but their role in seizure genesis in FCD is unclear.Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients.Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in typeⅡFCD,including an enlarged soma,aberrant dendritic arbors,increased current injection for rheobase action potential firing,and reduced action potential firing frequency.Intriguingly,the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na^(+)-K^(+)-Cl^(−)cotransporter.In addition,we found a depolarizing shift of the GABA reversal potential in the CamKⅡ-cre::PTENflox/flox mouse model of drug-resistant epilepsy,suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons.Thus,imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in typeⅡFCD. 展开更多
关键词 Focal cortical dysplasia Dysmorphic neuron Whole-cell patch-clamp recording Morphological reconstruction Excitation-inhibition balance
原文传递
ATP13A2 protects dopaminergic neurons in Parkinson's disease:from biology to pathology 被引量:1
14
作者 Tao Dang Wen-Jing Cao +3 位作者 Rong Zhao Ming Lu Gang Hu Chen Qiao 《The Journal of Biomedical Research》 CAS CSCD 2022年第2期98-108,共11页
As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central ner... As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central nervous system. Furthermore, ATP13A2 regulates the normal function of several organelles such as lysosomes, endoplasmic reticulum (ER) and mitochondria, and maintains the normal physiological activity of neural cells. Especially, ATP13A2 protects dopaminergic (DA) neurons against environmental or genetically induced Parkinson's disease (PD). As we all know, PD is a neurodegenerative disease characterized by the loss of DA neurons in the substantia nigra pars compacta. An increasing number of studies have reported that the loss-of- function of ATP13A2 affects normal physiological processes of various organelles, leading to abnormalities and the death of DA neurons. Previous studies in our laboratory have also shown that ATP13A2 deletion intensifies the neuroinflammatory response induced by astrocytes, thus inducing DA neuronal injury. In addition to elucidating the normal structure and function of ATP13A2, this review summarized the pathological mechanisms of ATP13A2 mutations leading to PD in existing literature studies, deepening the understanding of ATP13A2 in the pathological process of PD and other related neurodegenerative diseases. This review provides inspiration for investigators to explore the essential regulatory role of ATP13A2 in PD in the future. 展开更多
关键词 ATP13A2 Parkinson's disease dopaminergic neurons LYSOSOME Α-SYNUCLEIN
暂未订购
Parvalbumin and Somatostatin Neurons in the Thalamic Reticular Nucleus Modulate Visual Information Processing in V1 of Mouse
15
作者 Jiamin Bu Guangwei Xu Yifeng Zhou 《Neuroscience Bulletin》 2025年第10期1824-1842,共19页
The thalamic reticular nucleus(TRN)plays a crucial role in regulating sensory encoding,even at the earliest stages of visual processing,as evidenced by numerous studies.Orientation selectivity,a vital neural response,... The thalamic reticular nucleus(TRN)plays a crucial role in regulating sensory encoding,even at the earliest stages of visual processing,as evidenced by numerous studies.Orientation selectivity,a vital neural response,is essential for detecting objects through edge perception.Here,we demonstrate that somatostatin(SOM)-expressing and parvalbumin(PV)-expressing neurons in the TRN project to the dorsal lateral geniculate nucleus and modulate orientation selectivity and the capacity for visual information processing in the primary visual cortex(V1).These findings show that SOM-positive and PV-positive neurons in the TRN are powerful modulators of visual information encoding in V1,revealing a novel role for this thalamic nucleus in influencing visual processing. 展开更多
关键词 Thalamic reticular nucleus Parvalbuminpositive neurons Somatostatin-positive neurons Primary visual cortex Dorsal lateral geniculate nuclei Receptive feld properties
原文传递
Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke 被引量:2
16
作者 Chun Li Yuping Luo Siguang Li 《Neural Regeneration Research》 2026年第3期869-886,共18页
Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen... Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen,and essential nutrients to brain tissues.This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death.Recent studies have clarified the multifactorial pathogenesis of ischemic stroke,highlighting the roles of energy failure,excitotoxicity,oxidative stress,neuroinflammation,and apoptosis.This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke.Additionally,we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke,including the interplay of apoptosis,autophagy,pyroptosis,ferroptosis,and necrosis,which collectively influence neuronal fate.We also discussed advancements in neuroprotective therapeutics,encompassing a range of interventions from pharmacological modulation to stem cell-based therapies,aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke.Despite these advancements,challenges remain in translating mechanistic insights into effective clinical therapies.Although neuroprotective strategies have shown promise in preclinical models,their efficacy in human trials has been inconsistent,often due to the complex pathology of ischemic stroke and the timing of interventions.In conclusion,this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia.It sheds light on cutting-edge advancements in potential neuroprotective therapeutics,underscores the promise of regenerative medicine,and offers a forward-looking perspective on potential clinical breakthroughs.The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes. 展开更多
关键词 apoptosis cerebral infarction clinical trial inflammation ischemic stroke mitochondria neurons NEUROPROTECTION oxidative stress PATHOPHYSIOLOGY stem cells
暂未订购
Optogenetic Infection and Optical Stimulation:A Study on Auditory Responses in Guinea Pig Cochlear Neurons
17
作者 Chen Liu Ning Yu 《Journal of Otology》 2025年第4期236-242,共7页
Objective:This study aims to establish an economically viable and easily accessible adult animal model for optogenetic activation of auditory neurons using adeno-associated viruses(AAVs)carrying Ch R2(H134R)to explore... Objective:This study aims to establish an economically viable and easily accessible adult animal model for optogenetic activation of auditory neurons using adeno-associated viruses(AAVs)carrying Ch R2(H134R)to explore the potential of cochlear optogenetics as a hearing restoration technology.Methods:Healthy adult guinea pigs were used in the experiments.The viral vector AAV2/8-Ch R2(H134R)-h Syn-e YFP was administered to the right cochlea via the round window membrane.The confocal microscopy and reverse transcription polymerase chain reaction(RT-PCR)were utilized to analyze the Ch R2(H134R)expression localized to spiral ganglion neurons(SGNs).The auditory pathway activation was assessed by recording the optical compound action potential(oCAP)and acoustic compound action potential(a CAP)at various laser intensities.Results:The Ch R2(H134R)-e YFP expression was confirmed in 90%of the tested animals,localized to the SGNs of the injected ear.Higher m RNA levels of Ch R2(H134R)and e YFP were observed in the injected ear compared to the non-injected ear,while actin(Actb)m RNA levels were not significantly different.The o CAP was successfully elicited by a 470 nm blue light laser stimulus,with similar amplitudes and latency periods to those of a CAPs when the o CAP was evoked by 5.80 m W blue light and the a CAP was evoked by a 40 d B SPL click.The amplitudes of o CAPs increased with increasing laser intensity.Conclusion:This study demonstrates the viability of optogenetic activation of the auditory system in adult guinea pigs through the transduction of AAV-Ch R2(H134R)in SGNs.Cochlear optogenetics demonstrates potential as a hearing restoration technology,providing a basis for further clinical research and opening new avenues for investigation. 展开更多
关键词 OPTOGENETICS COCHLEAR Hearing restoration Spiral ganglion neurons Guinea pigs
暂未订购
Suprachiasmatic Nucleus Vasoactive Intestinal Peptide Neurons Mediate Light-induced Transient Forgetting
18
作者 Xiaoya Su Yikai Tang +1 位作者 Yi Zhong Yunlong Liu 《Neuroscience Bulletin》 2025年第11期2025-2035,共11页
Our research reveals the critical role of the suprachiasmatic nucleus(SCN)vasoactive intestinal peptide(VIP)neurons in mediating light-induced transient forgetting.Acute exposure to bright light selectively impairs tr... Our research reveals the critical role of the suprachiasmatic nucleus(SCN)vasoactive intestinal peptide(VIP)neurons in mediating light-induced transient forgetting.Acute exposure to bright light selectively impairs trace fear memory by activating VIP neurons in the SCN,as demonstrated by increased c-Fos expression and Ca2+recording.This effect can be replicated and reversed through optogenetic and chemogenetic manipulations of SCN VIP neurons.Furthermore,we identify the SCN→PVT(paraventricular nucleus of the thalamus)VIP neuronal circuitry as essential in this process.These findings establish a novel role for SCN VIP neurons in modulating memory accessibility in response to environmental light cues,extending their known function beyond circadian regulation and revealing a mechanism for transient forgetting. 展开更多
关键词 LIGHT Transient forgetting Suprachiasmatic nucleus Vasoactive intestinal peptide neurons
原文传递
Revolutionizing neuromorphic computing with memristor-based artificial neurons
19
作者 Yanning Chen Guobin Zhang +4 位作者 Fang Liu Bo Wu Yongfeng Deng Dawei Gao Yishu Zhang 《Journal of Semiconductors》 2025年第6期54-64,共11页
As traditional von Neumann architectures face limitations in handling the demands of big data and complex computa-tional tasks,neuromorphic computing has emerged as a promising alternative,inspired by the human brain&... As traditional von Neumann architectures face limitations in handling the demands of big data and complex computa-tional tasks,neuromorphic computing has emerged as a promising alternative,inspired by the human brain's neural networks.Volatile memristors,particularly Mott and diffusive memristors,have garnered significant attention for their ability to emulate neuronal dynamics,such as spiking and firing patterns,enabling the development of reconfigurable and adaptive computing systems.Recent advancements include the implementation of leaky integrate-and-fire neurons,Hodgkin-Huxley neurons,opto-electronic neurons,and time-surface neurons,all utilizing volatile memristors to achieve efficient,low-power,and highly inte-grated neuromorphic systems.This paper reviews the latest progress in volatile memristor-based artificial neurons,highlight-ing their potential for energy-efficient computing and integration with artificial synapses.We conclude by addressing chal-lenges such as improving memristor reliability and exploring new architectures to advance memristor-based neuromorphic com-puting. 展开更多
关键词 Volatile memristor Mott memristor diffusive memristor artificial neurons neuromorphic computing
在线阅读 下载PDF
Significance of the Thalamic Reticular Nucleus GABAergic Neurons in Normal and Pathological Activity of the Brain
20
作者 Zakaria I. Nanobashvili Arkadi G. Surmava +3 位作者 Irine G. Bilanishvili Maia G. Barbaqadze Magda D. Mariamidze Nadejda A. Khizanishvili 《Journal of Behavioral and Brain Science》 2012年第4期436-444,共9页
The relationship between neurons of the thalamic reticular nucleus (TRN) and relay neurons of the thalamic nuclei was studied. Activation of the TRN neurons was shown to abate activity of relay neurons. This evidence ... The relationship between neurons of the thalamic reticular nucleus (TRN) and relay neurons of the thalamic nuclei was studied. Activation of the TRN neurons was shown to abate activity of relay neurons. This evidence was obtained by stimulation of the TRN and the neocortex and, by introduction of small doses of nembutal as well. Suppression of the relay neuronal activity by the TRN neurons is supposed to occur monosynaptically. It has been also revealed that neuronal activity of the TRN enhances in a clonic phase of seizures generated by stimulation of the hippocampus and as soon as the electroencephalographic seizure reactions disappear. The suppression of limbic motor seizures is obviously related to the process of potentiation in GABAergic synapses of thalamocortical networks. Thus, stimulation of the TRN appears to be a rather valuable methodical tool that can open up prospects in the development of new “anticonvulsive” strategies in the treated of temporal lobe epilepsy. 展开更多
关键词 THALAMIC RETICULAR Nucleus Relay neurons SEIZURE ACTIVITY POTENTIATION CATS
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部