期刊文献+
共找到2,430篇文章
< 1 2 122 >
每页显示 20 50 100
Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching
1
作者 Jangampalli Adi Pradeepkiran Priyanka Rawat +2 位作者 Arubala P.Reddy Erika Orlov PHemachandra Reddy 《Neural Regeneration Research》 SCIE CAS 2025年第9期2624-2632,共9页
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are... The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition. 展开更多
关键词 diethyl(3 4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ) hippocampal neuronal cells HT22 neurite outgrowth neuronal development small molecule
暂未订购
Many faces of neuronal activity manipulation in Drosophila
2
作者 Amber Krebs Steffen Kautzmann Christian Klämbt 《Neural Regeneration Research》 SCIE CAS 2025年第9期2574-2576,共3页
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron... Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time. 展开更多
关键词 MANIPULATION potential. neuronal
在线阅读 下载PDF
Neuronal plasticity and its role in Alzheimer's disease and Parkinson's disease
3
作者 Israt Jahan Mohammad Harun-Ur-Rashid +4 位作者 MdAminul Islam Farhana Sharmin Soad K.Al Jaouni Abdullah M.Kaki Samy Selim 《Neural Regeneration Research》 2026年第1期107-125,共19页
Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinso... Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease,this plasticity is disrupted,leading to cognitive and motor deficits.This review explores the mechanisms of neuronal plasticity and its effect on Alzheimer's disease and Parkinson's disease.Alzheimer's disease features amyloid-beta plaques and tau tangles that impair synaptic function,while Parkinson's disease involves the loss of dopaminergic neurons affecting motor control.Enhancing neuronal plasticity offers therapeutic potential for these diseases.A systematic literature review was conducted using databases such as PubMed,Scopus,and Google Scholar,focusing on studies of neuronal plasticity in Alzheimer's disease and Parkinson's disease.Data synthesis identified key themes such as synaptic mechanisms,neurogenesis,and therapeutic strategies,linking molecular insights to clinical applications.Results highlight that targeting synaptic plasticity mechanisms,such as long-term potentiation and long-term depression,shows promise.Neurotrophic factors,advanced imaging techniques,and molecular tools(e.g.,clustered regularly interspaced short palindromic repeats and optogenetics)are crucial in understanding and enhancing plasticity.Current therapies,including dopamine replacement,deep brain stimulation,and lifestyle interventions,demonstrate the potential to alleviate symptoms and improve outcomes.In conclusion,enhancing neuronal plasticity through targeted therapies holds significant promise for treating neurodegenerative diseases.Future research should integrate multidisciplinary approaches to fully harness the therapeutic potential of neuronal plasticity in Alzheimer's disease and Parkinson's disease. 展开更多
关键词 Alzheimer's disease long-term depression long-term potentiation NEUROINFLAMMATION neuronal plasticity Parkinson's disease synaptic plasticity
暂未订购
Positive impact of indicaxanthin from Opuntia ficusindica fruit on high-fat diet–induced neuronal damage and gut microbiota dysbiosis
4
作者 Simona Terzo Antonella Amato +12 位作者 Pasquale Calvi Marta Giardina Domenico Nuzzo Pasquale Picone Antonio Palumbo-Piccionello Sara Amata Ilenia Concetta Giardina Alessandro Massaro Ignazio Restivo Alessandro Attanzio Luisa Tesoriere Mario Allegra Flavia Mulè 《Neural Regeneration Research》 2026年第1期324-332,共9页
Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxa... Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxanthin. This study investigated the impact of indicaxanthin on neuronal damage and gut microbiota dysbiosis induced by a high-fat diet in mice. The mice were divided into three groups according to different diets: the negative control group was fed a standard diet;the high-fat diet group was fed a high-fat diet;and the high-fat diet + indicaxanthin group was fed a high-fat diet and received indicaxanthin orally(0.86 mg/kg per day) for 4 weeks. Brain apoptosis, redox status, inflammation, and the gut microbiota composition were compared among the different animal groups. The results demonstrated that indicaxanthin treatment reduced neuronal apoptosis by downregulating the expression of proapoptotic genes and increasing the expression of antiapoptotic genes. Indicaxanthin also markedly decreased the expression of neuroinflammatory proteins and genes and inhibited high-fat diet–induced neuronal oxidative stress by reducing reactive oxygen and nitrogen species, malondialdehyde, and nitric oxide levels. In addition, indicaxanthin treatment improved the microflora composition by increasing the abundance of healthy bacterial genera, known as producers of short-chain fatty acids(Lachnospiraceae, Alloprovetella, and Lactobacillus), and by reducing bacteria related to unhealthy profiles(Blautia, Faecalibaculum, Romboutsia and Bilophila). In conclusion, indicaxanthin has a positive effect on high-fat diet–induced neuronal damage and on the gut microbiota composition in obese mice. 展开更多
关键词 gut microbiota dysbiosis high-fat diet indicaxanthin MICROFLORA neuronal apoptosis NEURODEGENERATION NEUROINFLAMMATION obesity Opuntia ficus-indica fruit
暂未订购
Neuronal swelling implicated in functional recovery after spinal cord injury
5
作者 Qiang Li 《Neural Regeneration Research》 2026年第4期1558-1559,共2页
Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathop... Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research. 展开更多
关键词 spinal cord injury SENSATION neuronal swelling autonomic regulation functional recovery PATHOPHYSIOLOGY spinal cord injury sci locomotion
暂未订购
Could inorganic polyphosphate be a valid target against neuronal senescence?
6
作者 Luca Tagliafico Maria E.Solesio 《Neural Regeneration Research》 2026年第3期1106-1107,共2页
Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence ... Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence has emerged as a major contributor and driver of this process in the mammalian cell.Cellular senescence is a programmed response to stress and irreparable damage,which drives the cell into an apoptosis-resistant,non-proliferative state.Senescent cells can also deleteriously affect neighboring,non-senescent cells.Senescence is a complex and multifaceted process associated with a wide range of cellular events,including the secretion of pro-inflammatory molecules and the arrest of the cell cycle. 展开更多
关键词 neuronal senescence non proliferative state neurodegenerative disorderswhile inorganic polyphosphate neurodegenerative disorders pro inflammatory molecules aging cellular senescence
暂未订购
X inactive-specific transcript regulates mitochondrial function and neuronal differentiation of stem cells via IGF2BP2/CPT1A axis in models of spinal cord injury
7
作者 Si-Xiang Zeng Jin-Tao Ye +1 位作者 Si-Hua Huang Ruo-Xi Liu 《World Journal of Stem Cells》 2025年第7期131-142,共12页
BACKGROUND Spinal cord injury(SCI)often results in irreversible neurological deficits;therefore,effective treatment is urgently needed.Neural stem cells(NSCs)have excellent differentiation potential.However,the role o... BACKGROUND Spinal cord injury(SCI)often results in irreversible neurological deficits;therefore,effective treatment is urgently needed.Neural stem cells(NSCs)have excellent differentiation potential.However,the role of the long noncoding RNA X inactive-specific transcript(XIST)in NSCs and SCI remains unclear.AIM To explore the role of XIST in enhancing NSC function and its therapeutic potential in SCI.METHODS We used in vitro and in vivo models to examine the effects of XIST on NSCs.XIST was overexpressed in NSCs,and its impact on mitochondrial function,neuronal differentiation,and the insulin-like growth factor 2 mRNA binding protein 2(IGF2BP2)/carnitine palmitoyl transferase 1A(CPT1A)pathway was assessed using a series of biochemical assays,quantitative PCR,and Seahorse XF24 analysis.A mouse model of SCI was used to evaluate the therapeutic effects of XIST in vivo.RESULTS Overexpression of XIST in NSCs significantly increased mitochondrial membrane potential,ATP production,and oxygen consumption rate.XIST also promoted NSC proliferation and neuronal differentiation while inhibiting astrocytic differentiation.Mechanistically,XIST regulated CPT1A expression post-transcriptionally by interacting with IGF2BP2.In vivo XIST-treated mice exhibited improved motor scores and reduced proinflammatory cytokine expression following SCI.CONCLUSIONThese findings suggested that XIST modulated mitochondrial function and neural differentiation in NSCs throughthe IGF2BP2/CPT1A pathway. While preliminary in vivo results are encouraging, further studies are needed todetermine the long-term therapeutic relevance and underlying mechanisms of XIST in SCI recovery. 展开更多
关键词 Spinal cord injury Neural stem cell X inactive-specific transcript Mitochondrial function neuronal differentiation
暂未订购
Exogenous and Endogenous Virus Infection and Pollutants Drive Neuronal Cell Senescence and Alzheimer’s Disease
8
作者 Federico Licastro 《BIOCELL》 2025年第6期981-989,共9页
Alzheimer’s disease(AD)is a neurodegenerative disease causing the most frequent form of dementia in old age.AD etiology is still uncertain and deposition of abnormal proteins in the brain along with chronic neuroinfl... Alzheimer’s disease(AD)is a neurodegenerative disease causing the most frequent form of dementia in old age.AD etiology is still uncertain and deposition of abnormal proteins in the brain along with chronic neuroinflammation have been suggested as pathogenic mechanisms of neuronal death.Infections by exogenous neurotropic virus,endogenous retrovirus reactivation,infections by other microbes,and air pollutants may either induce neurodegeneration or activate brain inflammation.Up to 8%of the human genome has a retroviral origin.These ancient retroviruses,also called human endogenous retroviruses,are associated with a clinical history of several neurodegenerative diseases.Under persistent stress,such as chronic infections and inflammation,neurons,and microglia cells may enter a state of division inactivation called cell senescence.Senescent cells are resistant to apoptosis and can release pro-inflammatory molecules promoting the functional decline of tissues and organs and also activate silent viruses.Infections andmutations induced by pollutants can lead to the expression of different endogenous retroviruses,which may contribute to several different diseases,including AD-associated neurodegeneration.Here I discuss that infection by exogenous pathogen,activation of endogenous retrovirus or retrotransposons and pollutants might induce neuronal senescence and cause persistent brain neurodegeneration.Therefore,cell senescence appears to be an emerging mechanism that might contribute to AD neurodegeneration.Finally,treatment of AD patients with senolytic drugs,e.g.,compounds able to kill senescent cells,might show a positive effect on AD progression. 展开更多
关键词 neuronal senescence inflammation exogenous virus and pollutants insults retrovirus activation neurodegeneration Alzheimer’s disease
暂未订购
The biological roles of exosome-encapsulated traditional Chinese medicine monomers in neuronal disorders
9
作者 Chen Pang Jie Zhang +2 位作者 Yujin Gu Qili Zhang Yanfang Zhao 《Journal of Pharmaceutical Analysis》 2025年第5期883-900,共18页
A traditional Chinese medicine(TCM)monomer is a bioactive compound extracted from Chinese herbal medicines possessing determined biological activity and pharmacological effects,and has gained much attention for treati... A traditional Chinese medicine(TCM)monomer is a bioactive compound extracted from Chinese herbal medicines possessing determined biological activity and pharmacological effects,and has gained much attention for treating neuronal diseases.However,the application of TCM monomers is limited by their low solubility and poor ability to cross the blood-brain barrier(BBB).Exosomes are small extracellular vesicles(EVs)ranging in size from 30 to 150 nm in diameter and can be used as drug delivery carriers that directly target cells or tissues with unique advantages,including low toxicity,low immunogenicity,high stability in blood,and the ability to cross the BBB.This review discusses the biogenesis,components,stability,surface modification,isolation technology,advantages,and disadvantages of exosomes as drug carriers and compares exosomes and other similar drug delivery systems.Furthermore,exosome-encapsulated TCM monomers exert neuroprotective roles,such as anti-inflammation,anti-apoptosis,anti-mitophagy,and anti-oxidation,in various neuronal diseases,including Alzheimer's disease(AD),Parkinson's disease(PD),multiple sclerosis(MS),and cerebral ischemia and reperfusion(CI/R)injury,as well as anti-drug resistance,anti-tumorigenesis,anti-angiogenesis,and promotion of apoptosis in brain tumors,providing more inspiration to promote the development of an exosome-based delivery tool in targeted therapy for neuronal diseases. 展开更多
关键词 Traditional Chinese medicine monomer EXOSOME Drug delivery neuronal disease
暂未订购
Long non-coding RNA GAS5 promotes neuronal apoptosis in spinal cord injury via the miR-21/PTEN axis
10
作者 Ying-Jie Wang Zhong-Zheng Zhi +2 位作者 Tao Liu Jian Kang Guang-Hui Xu 《World Journal of Orthopedics》 2025年第5期80-92,共13页
BACKGROUND Spinal cord injury(SCI)is a severe and permanent trauma that often leads to significant motor,sensory,and autonomic dysfunction.Neuronal apoptosis is a major pathomechanism underlying secondary injury in SC... BACKGROUND Spinal cord injury(SCI)is a severe and permanent trauma that often leads to significant motor,sensory,and autonomic dysfunction.Neuronal apoptosis is a major pathomechanism underlying secondary injury in SCI.Long non-coding RNAs(lncRNAs)have emerged as key regulators of gene expression and cellular processes,including apoptosis.However,the role of lncRNA growth arrest-specific transcript 5(GAS5)in SCI-induced neuronal apoptosis remains unclear.AIM To investigate the role of lncRNA GAS5 in SCI-induced neuronal apoptosis via its interaction with microRNA(miR)-21 and the phosphatase and tensin homolog(PTEN)/AKT pathway.METHODS SCI rat models and hypoxic neuronal cell models were established.Motor function was assessed using the Basso-Beattie-Bresnahan score.Expression levels of GAS5,miR-21,PTEN,caspase 3,B-cell lymphoma 2(Bcl-2),Bcl-2-associated X protein(Bax),and AKT were measured using quantitative PCR or Western blot analysis.Neuronal apoptosis was determined by TUNEL staining.Dual-luciferase reporter assays validated GAS5-miR-21 binding.Knockdown and overexpression experiments explored the functional effects of the GAS5/miR-21 axis.RESULTS GAS5 was significantly upregulated in the spinal cord following SCI,coinciding with increased neuronal apoptosis and decreased AKT activation.In vitro experiments demonstrated that GAS5 acted as a molecular sponge for miR-21,leading to increased PTEN expression and inhibition of the AKT signaling pathway,thereby promoting apoptosis.In vivo,GAS5 knockdown attenuated neuronal apoptosis,enhanced AKT activation,and improved motor function recovery in SCI rats.CONCLUSION GAS5 promotes neuronal apoptosis in SCI by binding to miR-21 and upregulating PTEN expression,inhibiting the AKT pathway.Targeting GAS5 may represent a novel therapeutic strategy for SCI. 展开更多
关键词 Spinal cord injury Long non-coding RNA Growth arrest-specific transcript 5 MICRORNA-21 neuronal apoptosis
暂未订购
A 3D semantic segmentation network for accurate neuronal soma segmentation
11
作者 Li Ma Qi Zhong +2 位作者 Yezi Wang Xiaoquan Yang Qian Du 《Journal of Innovative Optical Health Sciences》 2025年第1期67-83,共17页
Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall... Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively. 展开更多
关键词 neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
原文传递
Optical manipulation of neuronal mitochondria using scanning optical tweezers
12
作者 Zhiyong Gong Tianli Wu +4 位作者 Xixi Chen Ping Wang Jinghui Guo Yuchao Li Baojun Li 《Journal of Innovative Optical Health Sciences》 2025年第4期205-214,共10页
Mitochondria play a crucial role in the physiological functions and energy metabolism of neurons,which can help in the understanding of complex biochemical reactions associated with various neurodegenerative diseases.... Mitochondria play a crucial role in the physiological functions and energy metabolism of neurons,which can help in the understanding of complex biochemical reactions associated with various neurodegenerative diseases.Neurons,being highly differentiated terminal cells,require a greater number of mitochondria than ordinary cells to generate significant amounts of ATP,which is necessary for the growth of differentiated neuronal structures like axons and dendrites and the transmission of electrical signals along neuronal axons.Advancements in imaging technology,electrophysiology,and fluorescence targeting labeling have facilitated the study of mitochondrial movements in neurons and axons.However,disordered mitochondrial movements can hinder their analysis and characterization.Thus,it becomes necessary to artificially control their transport.Here,we demonstrate the utilization of scanning optical tweezers(SOTs)on the stable trapping and precise transport of soma or axon of neurons and enable.The presented method provides an optical approach to the control of mitochondria or other organelles in complex and variable biological environment. 展开更多
关键词 Scanning optical tweezers neuronal mitochondrial transport optical trapping
原文传递
NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation 被引量:3
13
作者 Zhihao Lin Changzhou Ying +6 位作者 Xiaoli Si Naijia Xue Yi Liu Ran Zheng Ying Chen Jiali Pu Baorong Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2038-2052,共15页
Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidati... Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase Cαto prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease. 展开更多
关键词 dopaminergic neuron ferroptosis NADPH oxidase 4(NOX4) NEUROINFLAMMATION Parkinson's disease
暂未订购
Neuronal Regulation of Feeding and Energy Metabolism: A Focus on the Hypothalamus and Brainstem 被引量:1
14
作者 Jing Chen Meiting Cai Cheng Zhan 《Neuroscience Bulletin》 2025年第4期665-675,共11页
In the face of constantly changing environments,the central nervous system(CNS)rapidly and accurately calculates the body's needs,regulates feeding behavior,and maintains energy homeostasis.The arcuate nucleus of ... In the face of constantly changing environments,the central nervous system(CNS)rapidly and accurately calculates the body's needs,regulates feeding behavior,and maintains energy homeostasis.The arcuate nucleus of the hypothalamus(ARC)plays a key role in this process,serv-ing as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis.Agouti-related protein(AgRP)/neuropeptide Y(NPY)neu-rons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.In this review,we explore the discovery and research progress of AgRP neurons in regulating feeding and energy metabolism.In addition,recent advances in terms of feeding behavior and energy homeostasis,along with the redundant neural mecha-nisms involved in energy metabolism,are discussed.Finally,the challenges and opportunities in the field of neural regula-tion of feeding and energy metabolism are briefly discussed. 展开更多
关键词 HYPOTHALAMUS AgRP neurons Feeding behavior Energy homeostasis BRAINSTEM NTS VLM Catecholaminergic neurons NPY neurons
原文传递
Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke 被引量:1
15
作者 Chun Li Yuping Luo Siguang Li 《Neural Regeneration Research》 2026年第3期869-886,共18页
Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen... Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen,and essential nutrients to brain tissues.This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death.Recent studies have clarified the multifactorial pathogenesis of ischemic stroke,highlighting the roles of energy failure,excitotoxicity,oxidative stress,neuroinflammation,and apoptosis.This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke.Additionally,we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke,including the interplay of apoptosis,autophagy,pyroptosis,ferroptosis,and necrosis,which collectively influence neuronal fate.We also discussed advancements in neuroprotective therapeutics,encompassing a range of interventions from pharmacological modulation to stem cell-based therapies,aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke.Despite these advancements,challenges remain in translating mechanistic insights into effective clinical therapies.Although neuroprotective strategies have shown promise in preclinical models,their efficacy in human trials has been inconsistent,often due to the complex pathology of ischemic stroke and the timing of interventions.In conclusion,this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia.It sheds light on cutting-edge advancements in potential neuroprotective therapeutics,underscores the promise of regenerative medicine,and offers a forward-looking perspective on potential clinical breakthroughs.The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes. 展开更多
关键词 apoptosis cerebral infarction clinical trial inflammation ischemic stroke mitochondria neurons NEUROPROTECTION oxidative stress PATHOPHYSIOLOGY stem cells
暂未订购
FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression
16
作者 Jing Yao Yuan Li +5 位作者 Xi Liu Wenping Liang Yu Li Liyong Wu Zhe Wang Weihong Song 《Neural Regeneration Research》 SCIE CAS 2025年第7期2068-2083,共16页
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle... Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression. 展开更多
关键词 5′end trimming Alzheimer's disease AMYLOID-BETA amyloid-β-dependent transcription FUBP3 INFLAMMASOME inflammation neuron NLRP3 tau transcription factor
暂未订购
C1ql3 knockout affects microglia activation, neuronal integrity, and spontaneous behavior in Wistar rats
17
作者 Li Zhang Wei Dong +5 位作者 Jingwen Li Shan Gao Hanxuan Sheng Qi Kong Feifei Guan Lianfeng Zhang 《Animal Models and Experimental Medicine》 2025年第2期332-343,共12页
Background:C1QL3 is widely expressed in the brain and is specifically produced by a subset of excitatory neurons.However,its function is still not clear.We established C1ql3-deficient rats to investigate the role of C... Background:C1QL3 is widely expressed in the brain and is specifically produced by a subset of excitatory neurons.However,its function is still not clear.We established C1ql3-deficient rats to investigate the role of C1QL3 in the brain.Methods:C1ql3 knockout(KO)rats were generated using CRISPR/Cas9.C1ql3 KO was determined by polymerase chain reaction(PCR),DNA sequencing,and western blot-ting.Microglia morphology and cytokine expression with or without lipopolysaccha-ride(LPS)stimulus were analyzed using immunohistochemistry and real-time PCR.The brain structure changes in KO rats were examined using magnetic resonance imaging.Neuronal architecture alteration was analyzed by performing Golgi staining.Behavior was evaluated using the open field test,Morris water maze test,and Y maze test.Results:C1ql3 KO significantly increased the number of ramified microglia and decreased the number of hypertrophic microglia,whereas C1ql3 KO did not in-fluence the expression of pro-inflammatory factors and anti-inflammatory factors except IL-10.C1ql3 KO brains had more amoeboid microglia types and higher Arg-1 expression compared with the WT rats after LPS stimulation.The brain weights and HPC sizes of C1ql3 KO rats did not differ from WT rats.C1ql3 KO damaged neuronal integrity including neuron dendritic arbors and spine density.C1ql3 KO rats demonstrated an increase in spontaneous activity and an impairment in short working memory.Conclusions:C1ql3 KO not only interrupts the neuronal integrity but also affects the microglial activation,resulting in hyperactive behavior and impaired short memory in rats,which highlights the role of C1QL3 in the regulation of structure and function of both neuronal and microglial cells. 展开更多
关键词 C1QL3 KNOCKOUT MICROGLIA NEURON rat
暂未订购
Single‑Neuron Reconstruction of the Macaque Primary Motor Cortex Reveals the Diversity of Neuronal Morphology
18
作者 Siyu Li Yan Shen +11 位作者 Yefei Chen Zexuan Hong Lewei Zhang Lufeng Ding Chao‑Yu Yang Xiaoyang Qi Quqing Shen Yanyang Xiao Pak‑Ming Lau Zhonghua Lu Fang Xu Guo‑Qiang Bi 《Neuroscience Bulletin》 2025年第3期525-530,共6页
Dear Editor,The primary motor cortex,also known as MOp in rodents,F1,or M1 in primates[1],plays a crucial role in autonomous motor control.It is interconnected with other motor control structures such as the basal gan... Dear Editor,The primary motor cortex,also known as MOp in rodents,F1,or M1 in primates[1],plays a crucial role in autonomous motor control.It is interconnected with other motor control structures such as the basal ganglia,thalamus,and brainstem.Among these connections,the corticostriatal system plays a significant role in functions including action selection,motor control,sequence learning,and habit formation[2]. 展开更多
关键词 habit formation autonomous motor controlit morphology action selectionmotor corticostriatal system NEURON basal gangliathalamusand primary motor cortexalso
原文传递
Bromodomain-containing protein 4 knockdown promotes neuronal ferroptosis in a mouse model of subarachnoid hemorrhage
19
作者 Peng Lu Fan Zhang +8 位作者 Lei Yang Yijing He Xi Kong Kecheng Guo Yuke Xie Huangfan Xie Bingqing Xie Yong Jiang Jianhua Peng 《Neural Regeneration Research》 2026年第2期715-729,共15页
Neuronal cell death is a common outcome of multiple pathophysiological processes and a key factor in neurological dysfunction after subarachnoid hemorrhage.Neuronal ferroptosis in particular plays an important role in... Neuronal cell death is a common outcome of multiple pathophysiological processes and a key factor in neurological dysfunction after subarachnoid hemorrhage.Neuronal ferroptosis in particular plays an important role in early brain injury.Bromodomain-containing protein 4,a member of the bromo and extraterminal domain family of proteins,participated in multiple cell death pathways,but the mechanisms by which it regulates ferroptosis remain unclear.The primary aim of this study was to investigate how bromodomain-containing protein 4 affects neuronal ferroptosis following subarachnoid hemorrhage in vivo and in vitro.Our findings revealed that endogenous bromodomain-containing protein 4 co-localized with neurons,and its expression was decreased 48 hours after subarachnoid hemorrhage of the cerebral cortex in vivo.In addition,ferroptosis-related pathways were activated in vivo and in vitro after subarachnoid hemorrhage.Targeted inhibition of bromodomain-containing protein 4 in neurons increased lipid peroxidation and intracellular ferrous iron accumulation via ferritinophagy and ultimately led to neuronal ferroptosis.Using cleavage under targets and tagmentation analysis,we found that bromodomain-containing protein 4 enrichment in the Raf-1 promoter region decreased following oxyhemoglobin stimulation in vitro.Furthermore,treating bromodomain-containing protein 4-knockdown HT-22 cell lines with GW5074,a Raf-1 inhibitor,exacerbated neuronal ferroptosis by suppressing the Raf-1/ERK1/2 signaling pathway.Moreover,targeted inhibition of neuronal bromodomain-containing protein 4 exacerbated early and long-term neurological function deficits after subarachnoid hemorrhage.Our findings suggest that bromodomain-containing protein 4 may have neuroprotective effects after subarachnoid hemorrhage,and that inhibiting ferroptosis could help treat subarachnoid hemorrhage. 展开更多
关键词 bromodomain-containing protein 4 cell death early brain injury ferritinophagy ferroptosis neurological deficits neuron oxidative stress RAF proto-oncogene serine/threonine-protein kinase(Raf-1) subarachnoid hemorrhage
暂未订购
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming 被引量:2
20
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs NEUROGENESIS post-transcriptional regulation RNA binding proteins
暂未订购
上一页 1 2 122 下一页 到第
使用帮助 返回顶部