Intestinal neuronal dysplasia type B(IND-B)is a controversial condition among gastrointestinal neuromuscular disorders.Constipation is its most common clinical manifestation in patients.Despite intense scientific rese...Intestinal neuronal dysplasia type B(IND-B)is a controversial condition among gastrointestinal neuromuscular disorders.Constipation is its most common clinical manifestation in patients.Despite intense scientific research,there are still knowledge gaps regarding the diagnostic criteria for IND-B in the histopathological analysis of rectal biopsies.The guidelines published in the past three decades have directed diagnostic criteria for quantifying the number of ganglion cells in the nervous plexus of the enteric nervous system.However,it is very complex to distinguish numerically what is pathological from what is normal,mainly because of the difficulty in determining a reliable control group composed of healthy children without intestinal symptoms.Thus,a series of immunohistochemical markers have been proposed to assist in the histopathological analysis of the enteric nervous system.Several of these markers facilitate the identification of other structures of the enteric nervous system,in addition to ganglion cells.These structures may be related to the etiopathogenesis of IND-B and represent new possibilities for the histopathological diagnosis of this disease,providing a view beyond the number of ganglion cells.This review critically discusses the aspects related to the disease definitions and diagnostic criteria of this organic cause of constipation.展开更多
Intestinal neuronal dysplasia type B(IND-B) is a controversial entity among the gastrointestinal neuromuscular disorders. It may occur alone or associated with other neuropathies, such as Hirschsprung's disease(HD...Intestinal neuronal dysplasia type B(IND-B) is a controversial entity among the gastrointestinal neuromuscular disorders. It may occur alone or associated with other neuropathies, such as Hirschsprung's disease(HD). Chronic constipation is the most common clinical manifestation of patients. IND-B primarily affects young children and mimics HD, but has its own histopathologic features characterized mainly by hyperplasia of the submucosal nerve plexus. Thus, IND-B should be included in the differential diagnoses of organic causes of constipation. In recent years, an increasing number of cases of IND-B in adults have also been described, some presenting severe constipation since childhood and others with the onset of symptoms at adulthood. Despite the intense scientific research in the last decades, there are still knowledge gaps regarding definition, pathogenesis, diagnostic criteria and therapeutic possibilities for IND-B. However, in medical practice, we continue to encounter patients with severe constipation or intestinal obstruction who undergo to diagnostic investigation for HD and their rectal biopsies present hyperganglionosis in the submucosal nerve plexus and other features, consistent with the diagnosis of IND-B. This review critically discusses aspects related to the disease definitions, pathophysiology and genetics, epidemiology distribution, clinical presentation, diagnostic criteria and therapeutic possibilities of this still little-known organic cause of intestinal chronic constipation.展开更多
Objective Formaldehyde at high concentrations is a contributor to air pollution. It is also an endogenous metabolic product in cells, and when beyond physiological concentrations, has pathological effects on neurons. ...Objective Formaldehyde at high concentrations is a contributor to air pollution. It is also an endogenous metabolic product in cells, and when beyond physiological concentrations, has pathological effects on neurons. Formaldehyde induces mis-folding and aggregation of neuronal tau protein, hippocampal neuronal apoptosis, cognitive impairment and loss of memory functions, as well as excitation of peripheral nociceptive neurons in cancer pain models. Intracellular calcium ([Ca2+]i) is an important intracellular messenger, and plays a key role in many pathological processes. The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane. Methods Using primary cultured hippocampal neurons as a model, changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy. Results Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i. (2R)-amino-5-phosphonopentanoate (AP5, 25 μmol/L, an NMDAR antagonist) and mibefradil (MIB, 1 μmol/L, a T-type Ca2+ channel blocker), given 5 min after formaldehyde perfusion, each partly inhibited the formaldehyde-induced increase of [Ca:+]i, and this inhibitory effect was reinforced by combined application of AP5 and MIB. When applied 3 min before formaldehyde perfusion, AP5 (even at 50μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i, but MIB (1 μmol/L) significantly inhibited this increase by 70%. Conclusion These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.展开更多
BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein. OBJECTIVE: To quantitatively and qualitatively analyze the influence of morp...BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein. OBJECTIVE: To quantitatively and qualitatively analyze the influence of morphine on levels of type Ⅱ inhibitory guanine nucleotide binding protein (Gi2 protein) in primary cultured hippocampal neurons at different time points. DESIGN, TIME AND SETTING: A randomized controlled study, which was performed at the Department of Neurobiology, Changzheng Hospital, Second Military Medical University of Chinese PLA between September 2002 and March 2004. MATERIALS: Cerebral hippocampal neurons were obtained from newborn SD rats at 1 2 days of age. Biotin-antibody Ⅱ-avidin fluorescein isothiocyanate (Avidin-FITC) was purchased from Sigma Company (USA) and the Gi2 protein polyclonal antibody from Santa Cruz Biochemistry Company (USA). METHODS: Seven days after culture, mature hippocampal neurons were randomly divided into six groups: 4-, 8-, 16-, 24-, and 48-hour morphine groups, and a blank control group. Neurons in the morphine groups received morphine (10 μ mol/L), which could cause alterations of G-protein mRNA and cAMP expression in the prefrontal cortex. Neurons in the blank control group were given the same volume of saline. MAIN OUTCOME MEASURES: Gi2 protein levels were detected by an immunofluorescence technique, and were analyzed by the image analytic system with the use of green fluorescence intensity. RESULTS: Gi2 protein levels in hippocampal neurons gradually decreased in the 4-, 8-, 16-, 24-, and 48-hour morphine groups. In particular, Gi2 protein levels in the 16-, 24-, and 48-hour morphine groups were significantly lower than that in the blank control group (P 〈 0.05 0.01). CONCLUSION: Morphine may decrease Gi2 protein level in primary hippocampal neurons, and the decreasing trend is positively related to morphine-induced time.展开更多
Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects y-aminobutyric acid type A receptor function i...Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects y-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that y-aminobutyric acid at 100 pmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by y-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a, y-aminobutyric acid type A-gated current induced by 100 IJmol/L y-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 mV, which could be inhibited by k252a and Na+-K+-CI cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of y-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-CI- cotransporter, and caused y-aminobutyric acid to exert an excitatory effect by activating y-aminobutyric acid type A receptor.展开更多
In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi- dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxid...In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi- dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg) was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental pa- rameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.展开更多
A previous study has proposed a mathematical model of type-A medial vestibular nucleus neurons (mVNn). This model is described by a system of nonlinear ordinary differential equations, which is based on the Hodgkin-Hu...A previous study has proposed a mathematical model of type-A medial vestibular nucleus neurons (mVNn). This model is described by a system of nonlinear ordinary differential equations, which is based on the Hodgkin-Huxley formalism. The type-A mVNn model contains several ionic conductances, such as the sodium conductance, calcium conductance, delayed-rectifier potassium conductance, transient potassium conductance, and calcium-dependent potassium conductance. The previous study revealed that spontaneous repetitive spiking in the type-A mVNn model can be suppressed by hyperpolarizing stimulation. However, how this suppression is affected by the ionic conductances has not been clarified in the previous study. The present study performed numerical simulation analysis of the type-A mVNn model to clarify how variations in the different ionic conductance values affect the suppression of repetitive spiking. The present study revealed that the threshold for the transition from a repetitive spiking state to a quiescent state is differentially sensitive to variations in the ionic conductances among the different types of ionic conductance.展开更多
Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous s...Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous system. The gene expression profiles of DRG neurons contribute to the generation, transmission, and regulation of various somatosensory signals. Recently, the single-cell transcriptomes, cell types, and functional annotations of somatosensory neurons have been studied. In this review, we introduce our classification of DRG neurons based on single-cell RNA-sequencing and functional analyses, and discuss the technical approaches. Moreover, studies on the molecular and cellular mechanisms underlying somatic sensations are discussed.展开更多
The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous huma...The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved.One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.展开更多
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei, leading to progressive limb and ...Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei, leading to progressive limb and trunk paralysis and muscular atrophy. Depending on the age of onset and maximum muscular function achieved, SMA is recognized as SMA1, SMA2, SMA3 or SMA4, and most patients have a deletion or truncation of the survival motor neuron 1 (SMN1) gene. In this report, we present a patient with a mild SMA phenotype, SMA3, and define his genetic abnormality. Tetra-primer amplification refractory mutation system PCR combined with restriction fragment length polymorphism analysis and array comparative genomic hybridization were used to determine the genetic variations in this patient. A 500 kb deletion in chromosome 5q13.2, including homozygous deletion of neuronal apoptosis inhibitory protein, and heterozygous deletion of occludin and B-double prime 1 was identified. This SMA region deletion did not involve SMN, indicating that SMN was likely to function normally. The phenotype was dependent of the large deletion and neuronal apoptosis inhibitory protein, occludin and B-double prime 1 may be candidate genes for SMA3.展开更多
Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neu- ~ ~ ~ 2+ ~ ~ 2+ rotransmlsslon by decreasing Ca reflux through high voltage-gated Ca channels. However, recent studies...Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neu- ~ ~ ~ 2+ ~ ~ 2+ rotransmlsslon by decreasing Ca reflux through high voltage-gated Ca channels. However, recent studies suggest that cannabinoids which activate cannabinoid receptor type 1 can increase neurotransmitter release by enhancing Ca2+ influx in vitro. The aim of the present study was to investigate the modulation of intracellular Ca2+ concentration by the cannabinoid receptor type 1 agonist anandamide, and its underlying mechanisms. Using whole cell voltage-damp and calcium imaging in cultured trigeminal ganglion neurons, we found that anandamide directly caused Ca2+ influx in a dose-dependent manner, which then triggered an increase of intracellular Ca2+ concentration. The cyclic adenosine and guanosine monophosphate-dependent protein kinase systems, but not the protein kinase C system, were involved in the increased intracellular Ca2+concentration by anandamide. This result showed that anandamide increased intracellu- lar Ca2+ concentration and inhibited high voltage-gated Ca2+ channels through different signal transduction pathways.展开更多
基金São Paulo Research Foundation(FAPESP),No.2017/26205-9.
文摘Intestinal neuronal dysplasia type B(IND-B)is a controversial condition among gastrointestinal neuromuscular disorders.Constipation is its most common clinical manifestation in patients.Despite intense scientific research,there are still knowledge gaps regarding the diagnostic criteria for IND-B in the histopathological analysis of rectal biopsies.The guidelines published in the past three decades have directed diagnostic criteria for quantifying the number of ganglion cells in the nervous plexus of the enteric nervous system.However,it is very complex to distinguish numerically what is pathological from what is normal,mainly because of the difficulty in determining a reliable control group composed of healthy children without intestinal symptoms.Thus,a series of immunohistochemical markers have been proposed to assist in the histopathological analysis of the enteric nervous system.Several of these markers facilitate the identification of other structures of the enteric nervous system,in addition to ganglion cells.These structures may be related to the etiopathogenesis of IND-B and represent new possibilities for the histopathological diagnosis of this disease,providing a view beyond the number of ganglion cells.This review critically discusses the aspects related to the disease definitions and diagnostic criteria of this organic cause of constipation.
基金Supported by Sao Paulo Research Foundation(FAPESP)No.2014/042271-1
文摘Intestinal neuronal dysplasia type B(IND-B) is a controversial entity among the gastrointestinal neuromuscular disorders. It may occur alone or associated with other neuropathies, such as Hirschsprung's disease(HD). Chronic constipation is the most common clinical manifestation of patients. IND-B primarily affects young children and mimics HD, but has its own histopathologic features characterized mainly by hyperplasia of the submucosal nerve plexus. Thus, IND-B should be included in the differential diagnoses of organic causes of constipation. In recent years, an increasing number of cases of IND-B in adults have also been described, some presenting severe constipation since childhood and others with the onset of symptoms at adulthood. Despite the intense scientific research in the last decades, there are still knowledge gaps regarding definition, pathogenesis, diagnostic criteria and therapeutic possibilities for IND-B. However, in medical practice, we continue to encounter patients with severe constipation or intestinal obstruction who undergo to diagnostic investigation for HD and their rectal biopsies present hyperganglionosis in the submucosal nerve plexus and other features, consistent with the diagnosis of IND-B. This review critically discusses aspects related to the disease definitions, pathophysiology and genetics, epidemiology distribution, clinical presentation, diagnostic criteria and therapeutic possibilities of this still little-known organic cause of intestinal chronic constipation.
基金supported by grants from the National Natural Science Foundation of China (81171042,81070893 and 81221002)the Beijing Outstanding Ph.D.Program Mentor Grantthe Specialized Research Fund for Doctoral Programs of Higher Education, China(20110001110058)
文摘Objective Formaldehyde at high concentrations is a contributor to air pollution. It is also an endogenous metabolic product in cells, and when beyond physiological concentrations, has pathological effects on neurons. Formaldehyde induces mis-folding and aggregation of neuronal tau protein, hippocampal neuronal apoptosis, cognitive impairment and loss of memory functions, as well as excitation of peripheral nociceptive neurons in cancer pain models. Intracellular calcium ([Ca2+]i) is an important intracellular messenger, and plays a key role in many pathological processes. The present study aimed to investigate the effect of formaldehyde on [Ca2+]i and the possible involvement of N-methyl-D-aspartate receptors (NMDARs) and T-type Ca2+ channels on the cell membrane. Methods Using primary cultured hippocampal neurons as a model, changes of [Ca2+]i in the presence of formaldehyde at a low concentration were detected by confocal laser scanning microscopy. Results Formaldehyde at 1 mmol/L approximately doubled [Ca2+]i. (2R)-amino-5-phosphonopentanoate (AP5, 25 μmol/L, an NMDAR antagonist) and mibefradil (MIB, 1 μmol/L, a T-type Ca2+ channel blocker), given 5 min after formaldehyde perfusion, each partly inhibited the formaldehyde-induced increase of [Ca:+]i, and this inhibitory effect was reinforced by combined application of AP5 and MIB. When applied 3 min before formaldehyde perfusion, AP5 (even at 50μmol/L) did not inhibit the formaldehyde-induced increase of [Ca2+]i, but MIB (1 μmol/L) significantly inhibited this increase by 70%. Conclusion These results suggest that formaldehyde at a low concentration increases [Ca2+]i in cultured hippocampal neurons; NMDARs and T-type Ca2+ channels may be involved in this process.
文摘BACKGROUND: The pharmacological action of opioid drugs is related to signal transduction of inhibitory guanine nucleotide binding protein. OBJECTIVE: To quantitatively and qualitatively analyze the influence of morphine on levels of type Ⅱ inhibitory guanine nucleotide binding protein (Gi2 protein) in primary cultured hippocampal neurons at different time points. DESIGN, TIME AND SETTING: A randomized controlled study, which was performed at the Department of Neurobiology, Changzheng Hospital, Second Military Medical University of Chinese PLA between September 2002 and March 2004. MATERIALS: Cerebral hippocampal neurons were obtained from newborn SD rats at 1 2 days of age. Biotin-antibody Ⅱ-avidin fluorescein isothiocyanate (Avidin-FITC) was purchased from Sigma Company (USA) and the Gi2 protein polyclonal antibody from Santa Cruz Biochemistry Company (USA). METHODS: Seven days after culture, mature hippocampal neurons were randomly divided into six groups: 4-, 8-, 16-, 24-, and 48-hour morphine groups, and a blank control group. Neurons in the morphine groups received morphine (10 μ mol/L), which could cause alterations of G-protein mRNA and cAMP expression in the prefrontal cortex. Neurons in the blank control group were given the same volume of saline. MAIN OUTCOME MEASURES: Gi2 protein levels were detected by an immunofluorescence technique, and were analyzed by the image analytic system with the use of green fluorescence intensity. RESULTS: Gi2 protein levels in hippocampal neurons gradually decreased in the 4-, 8-, 16-, 24-, and 48-hour morphine groups. In particular, Gi2 protein levels in the 16-, 24-, and 48-hour morphine groups were significantly lower than that in the blank control group (P 〈 0.05 0.01). CONCLUSION: Morphine may decrease Gi2 protein level in primary hippocampal neurons, and the decreasing trend is positively related to morphine-induced time.
基金the National Natural Science Foundation of China, No. 30471657
文摘Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects y-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that y-aminobutyric acid at 100 pmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by y-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a, y-aminobutyric acid type A-gated current induced by 100 IJmol/L y-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 mV, which could be inhibited by k252a and Na+-K+-CI cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of y-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-CI- cotransporter, and caused y-aminobutyric acid to exert an excitatory effect by activating y-aminobutyric acid type A receptor.
基金supported by a National Research Foundation of Korea Grant funded by the Korean Government(MEST)Republic of Korea,No.2010-0007712
文摘In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi- dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg) was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental pa- rameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.
文摘A previous study has proposed a mathematical model of type-A medial vestibular nucleus neurons (mVNn). This model is described by a system of nonlinear ordinary differential equations, which is based on the Hodgkin-Huxley formalism. The type-A mVNn model contains several ionic conductances, such as the sodium conductance, calcium conductance, delayed-rectifier potassium conductance, transient potassium conductance, and calcium-dependent potassium conductance. The previous study revealed that spontaneous repetitive spiking in the type-A mVNn model can be suppressed by hyperpolarizing stimulation. However, how this suppression is affected by the ionic conductances has not been clarified in the previous study. The present study performed numerical simulation analysis of the type-A mVNn model to clarify how variations in the different ionic conductance values affect the suppression of repetitive spiking. The present study revealed that the threshold for the transition from a repetitive spiking state to a quiescent state is differentially sensitive to variations in the ionic conductances among the different types of ionic conductance.
基金supported by grants from the National Natural Science Foundation of China(31630033,31130066,31671094,and 81300961)the Chinese Academy of Sciences(XDB02010000 and QYZDY-SSW-SMC007)the Shanghai Science and Technology Committee(16JC1420500)
文摘Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous system. The gene expression profiles of DRG neurons contribute to the generation, transmission, and regulation of various somatosensory signals. Recently, the single-cell transcriptomes, cell types, and functional annotations of somatosensory neurons have been studied. In this review, we introduce our classification of DRG neurons based on single-cell RNA-sequencing and functional analyses, and discuss the technical approaches. Moreover, studies on the molecular and cellular mechanisms underlying somatic sensations are discussed.
基金supported by the National Natural Science Foundation of China(91632304 and 31500671)
文摘The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved.One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.
基金the Foundation of Science and Technology Department of Zhejiang Province,China,No. 2007C33049Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China,No. J0710043
文摘Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei, leading to progressive limb and trunk paralysis and muscular atrophy. Depending on the age of onset and maximum muscular function achieved, SMA is recognized as SMA1, SMA2, SMA3 or SMA4, and most patients have a deletion or truncation of the survival motor neuron 1 (SMN1) gene. In this report, we present a patient with a mild SMA phenotype, SMA3, and define his genetic abnormality. Tetra-primer amplification refractory mutation system PCR combined with restriction fragment length polymorphism analysis and array comparative genomic hybridization were used to determine the genetic variations in this patient. A 500 kb deletion in chromosome 5q13.2, including homozygous deletion of neuronal apoptosis inhibitory protein, and heterozygous deletion of occludin and B-double prime 1 was identified. This SMA region deletion did not involve SMN, indicating that SMN was likely to function normally. The phenotype was dependent of the large deletion and neuronal apoptosis inhibitory protein, occludin and B-double prime 1 may be candidate genes for SMA3.
基金supported by NIH,grant No.GM-63577NNSF,grant No.30571537,No.30271500+1 种基金the National Natural Science Foundation of China,No.30271500,30571537 and 813702462010 National Clinical Key Disciplines Construction Grant from the Ministry of Health of the People’s Republic of China
文摘Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neu- ~ ~ ~ 2+ ~ ~ 2+ rotransmlsslon by decreasing Ca reflux through high voltage-gated Ca channels. However, recent studies suggest that cannabinoids which activate cannabinoid receptor type 1 can increase neurotransmitter release by enhancing Ca2+ influx in vitro. The aim of the present study was to investigate the modulation of intracellular Ca2+ concentration by the cannabinoid receptor type 1 agonist anandamide, and its underlying mechanisms. Using whole cell voltage-damp and calcium imaging in cultured trigeminal ganglion neurons, we found that anandamide directly caused Ca2+ influx in a dose-dependent manner, which then triggered an increase of intracellular Ca2+ concentration. The cyclic adenosine and guanosine monophosphate-dependent protein kinase systems, but not the protein kinase C system, were involved in the increased intracellular Ca2+concentration by anandamide. This result showed that anandamide increased intracellu- lar Ca2+ concentration and inhibited high voltage-gated Ca2+ channels through different signal transduction pathways.