期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A neurofuzzy system based on rough set theory and genetic algorithm 被引量:1
1
作者 罗健旭 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期278-282,共5页
This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the inpu... This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infrastructure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit (FCCU), and satisfying results are obtained. 展开更多
关键词 soft computing neurofuzzy system rough set genetic algorithm
在线阅读 下载PDF
A Novel Parsimonious Neurofuzzy Model Applied to Railway Carriage System Identification and Fault Diagnosis 被引量:1
2
作者 S.C.Zhou O.L.Shuai +1 位作者 T.T.Wong T.P.Leung 《International Journal of Plant Engineering and Management》 1997年第4期7-11,共5页
In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional... In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional input variables, in our developed model the features extracted from the available observations are regarded as the input variables by adopting the higher-order statistics(HOS) technique. Such a constructed model is also applied to a practical railway carriage system, simulation results indicate that the developed neurofuzzy model possesses strong identification and fault diagnosis ability. 展开更多
关键词 parsimonious neurofuzzy model feature extraction by Higher-Order Statistics (HOS) railway carriage system identification and fault diagnosis
在线阅读 下载PDF
CNN Based Multi-Object Segmentation and Feature Fusion for Scene Recognition 被引量:2
3
作者 Adnan Ahmed Rafique Yazeed Yasin Ghadi +3 位作者 Suliman AAlsuhibany Samia Allaoua Chelloug Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2022年第12期4657-4675,共19页
Latest advancements in vision technology offer an evident impact on multi-object recognition and scene understanding.Such sceneunderstanding task is a demanding part of several technologies,like augmented reality-base... Latest advancements in vision technology offer an evident impact on multi-object recognition and scene understanding.Such sceneunderstanding task is a demanding part of several technologies,like augmented reality-based scene integration,robotic navigation,autonomous driving,and tourist guide.Incorporating visual information in contextually unified segments,convolution neural networks-based approaches will significantly mitigate the clutter,which is usual in classical frameworks during scene understanding.In this paper,we propose a convolutional neural network(CNN)based segmentation method for the recognition of multiple objects in an image.Initially,after acquisition and preprocessing,the image is segmented by using CNN.Then,CNN features are extracted from these segmented objects,and discrete cosine transform(DCT)and discrete wavelet transform(DWT)features are computed.After the extraction of CNN features and computation of classical machine learning features,fusion is performed using a fusion technique.Then,to select theminimal set of features,genetic algorithm-based feature selection is used.In order to recognize and understand the multi-objects in the scene,a neuro-fuzzy approach is applied.Once objects in the scene are recognized,the relationship between these objects is examined by employing the object-to-object relation approach.Finally,a decision tree is incorporated to assign the relevant labels to the scenes based on recognized objects in the image.The experimental results over complex scene datasets including SUN Red Green Blue-Depth(RGB-D)and Cityscapes’demonstrated a remarkable performance. 展开更多
关键词 Convolutional neural network decision tree feature fusion neurofuzzy system
在线阅读 下载PDF
Hybrid approach for fuzzy system design
4
作者 李映 赵荣椿 +1 位作者 张艳宁 焦李成 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期299-303,共5页
A hybrid approach for fuzzy system design based on clustering and a kind of neurofuzzy networks is proposed. An unsupervised clustering technique is firstly used to determine the number of if-then fuzzy rules and gene... A hybrid approach for fuzzy system design based on clustering and a kind of neurofuzzy networks is proposed. An unsupervised clustering technique is firstly used to determine the number of if-then fuzzy rules and generate an initial fuzzy rule base from the given input-output data. Then, a class of neurofuzzy networks is constructed and its weights are tuned so that the obtained fuzzy rule base has a high accuracy. Finally, two examples of function approximation problems are given to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Fuzzy systems design fuzzy rule base CLUSTERING neurofuzzy networks.
在线阅读 下载PDF
An intelligent online fault diagnostic scheme for nonlinear systems
5
作者 Hing Tung MOK 《控制理论与应用(英文版)》 EI 2008年第3期267-272,共6页
An online fault diagnostic scheme for nonlinear systems based on neurofuzzy networks is proposed in this paper. The scheme involves two stages. In the first stage, the nonlinear system is approximated by a neurofuzzy ... An online fault diagnostic scheme for nonlinear systems based on neurofuzzy networks is proposed in this paper. The scheme involves two stages. In the first stage, the nonlinear system is approximated by a neurofuzzy network, which is trained offline from data obtained during the normal operation of the system. In the second stage, residual is generated online from this network and is modelled by another neurofuzzy network trained online. Fuzzy rules are extracted from this network, and are compared with those in the fault database obtained under different faulty operations, from which faults are diagnosed. The performance of the proposed intelligent fault scheme is illustrated using a two-tank water level control system under different faulty conditions . 展开更多
关键词 Fault diagnosis Nonlinear systems neurofuzzy networks
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部