The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on...The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.展开更多
We propose a novel inverse-free neurodynamic approach (NIFNA) for solving absolute value equations (AVE). The NIFNA guarantees global convergence and notably improves convergence speed by achieving fixed-time converge...We propose a novel inverse-free neurodynamic approach (NIFNA) for solving absolute value equations (AVE). The NIFNA guarantees global convergence and notably improves convergence speed by achieving fixed-time convergence. To validate the theoretical findings, numerical simulations are conducted, demonstrating the effectiveness and efficiency of the proposed NIFNA.展开更多
This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the...This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the help of projection operators,a primal-dual framework,and Nesterov's accelerated method,we first design a distributed accelerated primal-dual projection neurodynamic approach(DAPDP),and its convergence rate of the primal-dual gap is O(1/(t^(2)))by selecting appropriate parameters and initial values.Then,when the local closed convex sets are convex inequalities which have no closed-form solutions of their projection operators,we further propose a distributed accelerated penalty primal-dual neurodynamic approach(DAPPD)on the strength of the penalty method,primal-dual framework,and Nesterov's accelerated method.Based on the above analysis,we prove that DAPPD also has a convergence rate O(1/(t^(2)))of the primal-dual gap.Compared with the distributed dynamical approaches based on the classical primal-dual framework,our proposed distributed accelerated neurodynamic approaches have faster convergence rates.Numerical simulations demonstrate that our proposed neurodynamic approaches are feasible and effective.展开更多
基金supported by the National Natural Science Foundation of China(62176218,62176027)the Fundamental Research Funds for the Central Universities(XDJK2020TY003)the Funds for Chongqing Talent Plan(cstc2024ycjh-bgzxm0082)。
文摘The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.
文摘We propose a novel inverse-free neurodynamic approach (NIFNA) for solving absolute value equations (AVE). The NIFNA guarantees global convergence and notably improves convergence speed by achieving fixed-time convergence. To validate the theoretical findings, numerical simulations are conducted, demonstrating the effectiveness and efficiency of the proposed NIFNA.
基金supported by the National Natural Science Foundation of China (Grant No.62176218)the Fundamental Research Funds for the Central Universities (Grant No.XDJK2020TY003)。
文摘This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the help of projection operators,a primal-dual framework,and Nesterov's accelerated method,we first design a distributed accelerated primal-dual projection neurodynamic approach(DAPDP),and its convergence rate of the primal-dual gap is O(1/(t^(2)))by selecting appropriate parameters and initial values.Then,when the local closed convex sets are convex inequalities which have no closed-form solutions of their projection operators,we further propose a distributed accelerated penalty primal-dual neurodynamic approach(DAPPD)on the strength of the penalty method,primal-dual framework,and Nesterov's accelerated method.Based on the above analysis,we prove that DAPPD also has a convergence rate O(1/(t^(2)))of the primal-dual gap.Compared with the distributed dynamical approaches based on the classical primal-dual framework,our proposed distributed accelerated neurodynamic approaches have faster convergence rates.Numerical simulations demonstrate that our proposed neurodynamic approaches are feasible and effective.