期刊文献+
共找到1,841篇文章
< 1 2 93 >
每页显示 20 50 100
Prediction of Daily Global Solar Radiation on a Horizontal Plane Using Adaptive Neuro-Fuzzy Inference System(ANFIS)
1
作者 Hamatti Mohamed Benchrifa Mohammed +4 位作者 Mohamed Elouardi Mouhsine Hadine Mabrouki Jamal El-Baz Morad Tadili Rachid 《Journal of Environmental & Earth Sciences》 2025年第1期527-539,共13页
In recent years,the world has seen an exponential increase in energy demand,prompting scientists to look for innovative ways to exploit the power sun’s power.Solar energy technologies use the sun’s energy and light ... In recent years,the world has seen an exponential increase in energy demand,prompting scientists to look for innovative ways to exploit the power sun’s power.Solar energy technologies use the sun’s energy and light to provide heating,lighting,hot water,electricity and even cooling for homes,businesses,and industries.Therefore,ground-level solar radiation data is important for these applications.Thus,our work aims to use a mathematical modeling tool to predict solar irradiation.For this purpose,we are interested in the application of the Adaptive Neuro Fuzzy Inference System.Through this type of artificial neural system,10 models were developed,based on meteorological data such as the Day number(Nj),Ambient temperature(T),Relative Humidity(Hr),Wind speed(WS),Wind direction(WD),Declination(δ),Irradiation outside the atmosphere(Goh),Maximum temperature(Tmax),Minimum temperature(Tmin).These models have been tested by different static indicators to choose the most suitable one for the estimation of the daily global solar radiation.This study led us to choose the M8 model,which takes Nj,T,Hr,δ,Ws,Wd,G0,and S0 as input variables because it presents the best performance either in the learning phase(R^(2)=0.981,RMSE=0.107 kW/m^(2),MAE=0.089 kW/m2)or in the validation phase(R^(2)=0.979,RMSE=0.117 kW/m^(2),MAE=0.101 kW/m^(2)). 展开更多
关键词 Solar Radiation Adaptive neuro-fuzzy inference system Prediction Horizontal Plane Mathematical Modelling
在线阅读 下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
2
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
在线阅读 下载PDF
A Novel Approach to Estimating Proof Test Coverage for Emergency Shutdown Valves using a Fuzzy Inference System
3
作者 Steve Kriescher Roderick Thomas +2 位作者 Chris Phillips Neil Mac Parthaláin David J.Smith 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期44-52,共9页
Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken us... Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken using component failure rate data to predict PTC for a full stroke test and a partial stroke test.Given the subjective and uncertain aspects of the FMEDA approach,specifically the selection of component failure rates and the determination of the probability of detecting failure modes,a Fuzzy Inference System(FIS)was proposed to manage the data,addressing the inherent uncertainties.Fuzzy inference systems have been used previously for various FMEA type assessments,but this is the first time an FIS has been employed for use with FMEDA.ESDV PTC values were generated from both the standard FMEDA and the fuzzy-FMEDA approaches using data provided by FMEDA experts.This work demonstrates that fuzzy inference systems can address the subjectivity inherent in FMEDA data,enabling reliable estimates of ESDV proof test coverage for both full and partial stroke tests.This facilitates optimized maintenance planning while ensuring safety is not compromised. 展开更多
关键词 emergency shutdown valves failure modes effects diagnostics analysis fuzzy inference systems proof test coverage
在线阅读 下载PDF
Real-Time Fault Detection and Isolation in Power Systems for Improved Digital Grid Stability Using an Intelligent Neuro-Fuzzy Logic
4
作者 Zuhaib Nishtar Fangzong Wang +1 位作者 Fawwad Hassan Jaskani Hussain Afzaal 《Computer Modeling in Engineering & Sciences》 2025年第6期2919-2956,共38页
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru... This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies. 展开更多
关键词 Fault detection and isolation(FDI) neuro-fuzzy systems digital grids smart grid resilience power system artificial intelligence(AI)
在线阅读 下载PDF
Composition Estimation of Reactive Batch Distillation by Using Adaptive Neuro-Fuzzy Inference System 被引量:4
5
作者 S.M.Khazraee A.H.Jahanmiri 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期703-710,共8页
Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distilla... Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme. 展开更多
关键词 reactive batch distillation MULTICOMPONENT pilot plant adaptive neuro-fuzzy inference system state estimation
在线阅读 下载PDF
Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods 被引量:6
6
作者 Danial BEHNIA Kaveh AHANGARI +1 位作者 Ali NOORZAD Sayed Rahim MOEINOSSADAT 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期589-602,共14页
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the b... This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs. 展开更多
关键词 Concrete face rockfill dam (CFRD) Crest settlement Adaptive neuro-fuzzy inference system (ANFIS) Geneexpression programming (GEP)
原文传递
Fuzzy inference systems with no any rule base and linearly parameter growth 被引量:2
7
作者 ShitongWANC KorrisF.L.CHUNG +2 位作者 JiepingLU BinHAN DewenHU 《控制理论与应用(英文版)》 EI 2004年第2期185-192,共8页
A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effect... A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy. 展开更多
关键词 Fuzzy inference Fuzzy systems Universal approximation Computational complexity Linearly parameter growth
在线阅读 下载PDF
A reversibly used cooling tower with adaptive neuro-fuzzy inference system 被引量:2
8
作者 吴加胜 张国强 +3 位作者 张泉 周晋 郭永辉 沈炜 《Journal of Central South University》 SCIE EI CAS 2012年第3期715-720,共6页
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons... An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT. 展开更多
关键词 reversibly used cooling tower HEATING adaptive neuro-fuzzy inference system fuzzy modeling approach
在线阅读 下载PDF
Detection of small bowel tumor in wireless capsule endoscopy images using an adaptive neuro-fuzzy inference system 被引量:1
9
作者 Mahdi Alizadeh Omid Haji Maghsoudi +3 位作者 Kaveh Sharzehi Hamid Reza Hemati Alireza Kamali Asl Alireza Talebpour 《The Journal of Biomedical Research》 CAS CSCD 2017年第5期419-427,共9页
Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing met... Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures(contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images. 展开更多
关键词 adaptive neuro-fuzzy inference system co-occurrence matrix wireless capsule endoscopy texture feature
在线阅读 下载PDF
An IPC-based Prolog design pattern for integrating backward chaining inference into applications or embedded systems 被引量:2
10
作者 Li Guoqi Shao Yuanxun +1 位作者 Hong Sheng Liu Bin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1571-1577,共7页
Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, s... Prolog is one of the most important candidates to build expert systems and AI-related programs and has potential applications in embedded systems. However, Prolog is not suitable to develop many kinds of components, such as data acquisition and task scheduling, which are also crucial. To make the best use of the advantages and bypass the disadvantages, it is attractive to integrate Prolog with programs developed by other languages. In this paper, an IPC-based method is used to integrate backward chaining inference implemented by Prolog into applications or embedded systems. A Prolog design pattern is derived from the method for reuse, whose principle and definition are provided in detail. Additionally, the design pattern is applied to a target system, which is free software, to verify its feasibility. The detailed implementation of the application is given to clarify the design pattern. The design pattern can be further applied to wide range applications and embedded systems and the method described in this paper can also be adopted for other logic programming languages. 展开更多
关键词 Backward chaining inference Design method Embedded systems inference engines Inter-process communication Prolog
原文传递
Adaptive Neuro-Fuzzy Inference System for Prediction of Effective Thermal Conductivity of Polymer-Matrix Composites
11
作者 Rajpal Singh Bhoopal Ramvir Singh Pradeep Kumar Sharma 《Modeling and Numerical Simulation of Material Science》 2012年第3期43-50,共8页
In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid ... In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models. 展开更多
关键词 neuro-fuzzy inference system Effective Thermal CONDUCTIVITY Polymer Composites VOLUME FRACTION FUZZY inference systems
在线阅读 下载PDF
Column breakthrough studies for the removal and recovery of phosphate by lime-iron sludge:Modeling and optimization using artificial neural network and adaptive neuro-fuzzy inference system
12
作者 Beverly S.Chittoo Clint Sutherland 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1847-1859,共13页
Increases in the treatment of water to meet the growing water demand ultimately result in unmanageable quantities of residuals,the handling,and disposal of which is a major environmental issue.Consequently,research in... Increases in the treatment of water to meet the growing water demand ultimately result in unmanageable quantities of residuals,the handling,and disposal of which is a major environmental issue.Consequently,research into beneficial reuse of water treatment residuals continues unabated.This study investigated the applicability of lime-iron sludge for phosphate adsorption by fixed-bed column adsorption.Laboratory-scale experiments were conducted at varying flow rates and bed depths.Fundamental and empirical models(Thomas,Yan,Bohart-Adams,Yoon-Nelson,and Wolboroska)as well as artificial intelligence techniques(Artificial neural network(ANN)and Adaptive neuro-fuzzy inference system(ANFIS))were used to simulate experimental breakthrough curves and predict column dynamics.Increase in flow rate resulted in reduced adsorption capacity.However,adsorption capacity was not affected by bed depth.ANN was superior in predicting breakthrough curves and predicted breakthrough times with high accuracy(R^2>0.9962).Na OH(0.5 mol·L^-1)was successfully used to regenerate the adsorption bed.After nine cyclic adsorption/desorption runs,only a marginal decrease in adsorption and desorption efficiencies of 10%and 8%respectively was observed.The same regenerate Na OH solution was reused for all desorption cycles.After nine cycles the eluent desorbed a total of 1550 mg phosphate exhibiting potential for further reuse. 展开更多
关键词 Adsorption PHOSPHATE SLUDGE Adaptive neuro-fuzzy inference system Neural Network
在线阅读 下载PDF
Optimal Control of Nonlinear Systems Using Experience Inference Human-Behavior Learning
13
作者 Adolfo Perrusquía Weisi Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期90-102,共13页
Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior lear... Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach. 展开更多
关键词 Experience inference hippocampus learning system linear time-variant(LTV)systems neocortex/striatum learning systems nonlinear systems optimal control
在线阅读 下载PDF
An Automatic Threshold Selection Using ALO for Healthcare Duplicate Record Detection with Reciprocal Neuro-Fuzzy Inference System
14
作者 Ala Saleh Alluhaidan Pushparaj +4 位作者 Anitha Subbappa Ved Prakash Mishra P.V.Chandrika Anurika Vaish Sarthak Sengupta 《Computers, Materials & Continua》 SCIE EI 2023年第3期5821-5836,共16页
ESystems based on EHRs(Electronic health records)have been in use for many years and their amplified realizations have been felt recently.They still have been pioneering collections of massive volumes of health data.D... ESystems based on EHRs(Electronic health records)have been in use for many years and their amplified realizations have been felt recently.They still have been pioneering collections of massive volumes of health data.Duplicate detections involve discovering records referring to the same practical components,indicating tasks,which are generally dependent on several input parameters that experts yield.Record linkage specifies the issue of finding identical records across various data sources.The similarity existing between two records is characterized based on domain-based similarity functions over different features.De-duplication of one dataset or the linkage of multiple data sets has become a highly significant operation in the data processing stages of different data mining programmes.The objective is to match all the records associated with the same entity.Various measures have been in use for representing the quality and complexity about data linkage algorithms,and many other novel metrics have been introduced.An outline of the problem existing in themeasurement of data linkage and de-duplication quality and complexity is presented.This article focuses on the reprocessing of health data that is horizontally divided among data custodians,with the purpose of custodians giving similar features to sets of patients.The first step in this technique is about an automatic selection of training examples with superior quality from the compared record pairs and the second step involves training the reciprocal neuro-fuzzy inference system(RANFIS)classifier.Using the Optimal Threshold classifier,it is presumed that there is information about the original match status for all compared record pairs(i.e.,Ant Lion Optimization),and therefore an optimal threshold can be computed based on the respective RANFIS.Febrl,Clinical Decision(CD),and Cork Open Research Archive(CORA)data repository help analyze the proposed method with evaluated benchmarks with current techniques. 展开更多
关键词 Duplicate detection healthcare record linkage dataset pre-processing reciprocal neuro-fuzzy inference system and ant lion optimization fuzzy system
在线阅读 下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
15
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL Network Adaptive neuro-fuzzy inference system CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
在线阅读 下载PDF
Application of the Adaptive Neuro-Fuzzy Inference System for Optimal Design of Reinforced Concrete Beams
16
作者 Jiin-Po Yeh Ren-Pei Yang 《Journal of Intelligent Learning Systems and Applications》 2014年第4期162-175,共14页
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l... Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99. 展开更多
关键词 Continuous Reinforced Concrete BEAMS GENETIC Algorithm Adaptive neuro-fuzzy inference system Correlation COEFFICIENTS
暂未订购
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
17
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 Adaptive neuro-fuzzy inference system(ANFIS) fuzzy logic controller fractional order control PID controller first order time delay system
在线阅读 下载PDF
The Development of an Alternative Method for the Sovereign Credit Rating System Based on Adaptive Neuro-Fuzzy Inference System
18
作者 Hakan Pabuccu Tuba Yakici Ayan 《American Journal of Operations Research》 2017年第1期41-55,共15页
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in t... The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries. 展开更多
关键词 Credit Rating Logistic Regression (LR) Neural Networks (ANN) Adaptive neuro-fuzzy inference system (ANFIS) Comparative Studies
暂未订购
Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system(ANFIS) approach 被引量:1
19
作者 A.C.Adoko Li Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期11-18,共8页
Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement... Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity. 展开更多
关键词 tunnel convergence prediction new Austrian tunneling method (NATM) adaptive neurc -fuzzy inference system(ANF1S) subtractive clustering
在线阅读 下载PDF
Adaptive Neuro-Fuzzy Inference System for Thermal Field Evaluation of Underground Cable System
20
作者 Mamdooh S. AI-Saud 《Journal of Energy and Power Engineering》 2012年第10期1643-1650,共8页
The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, comb... The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, combined with artificial intelligence methods. The cable temperature depends on several parameters, such as the ambient temperature, the currents flowing through the conductor and the resistivity of the surrounding soil. In this paper, ANFIS is used to simulate the problem of the thermal field of underground cables under various parameters variation and climatic conditions. The developed model was trained using data generated from FEM (finite element method) for different configurations (training set) of the thermal field problem. After training, the system is tested for several scenarios, differing significantly from the training cases. It is shown that the proposed method is very time efficient and accurate in calculating the thermal fields compared to the relatively time consuming finite element method; thus ANFIS provides a potential computationally efficient and inexpensive predictive tool for more effective thermal design of underground cable systems. 展开更多
关键词 Underground cables AMPACITY thermal analysis finite element method adaptive neuro-fuzzy inference system.
在线阅读 下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部