期刊文献+
共找到562,166篇文章
< 1 2 250 >
每页显示 20 50 100
Computer modeling of high-pressure leaching process of nickel laterite by design of experiments and neural networks 被引量:1
1
作者 Milovan Milivojevic Srecko Stopic +2 位作者 Bernd Friedrich Boban Stojanovic Dragoljub Drndarevic 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期584-594,共11页
Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, c... Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function. 展开更多
关键词 nickel laterite LEACHING computer simulation design of experiments (DOE) response surface method (RSM) neural networks
在线阅读 下载PDF
Application of convolutional neural networks for computer-aided detection and diagnosis in gastrointestinal pathology: A simplified exposition for an endoscopist
2
作者 Yirupaiahgari KS Viswanath Sagar Vaze Richie Bird 《Artificial Intelligence in Gastrointestinal Endoscopy》 2020年第1期1-5,共5页
The application of artificial intelligence(AI),especially machine learning or deep learning(DL),is advancing at a rapid pace.The need for increased accuracy at endoscopic visualisation of the gastrointestinal(GI)tract... The application of artificial intelligence(AI),especially machine learning or deep learning(DL),is advancing at a rapid pace.The need for increased accuracy at endoscopic visualisation of the gastrointestinal(GI)tract is also growing.Convolutional neural networks(CNNs)are one such model of DL,which have been used for endoscopic image analysis,whereby computer-aided detection and diagnosis of GI pathology can be carried out with increased scrupulousness.In this article,we briefly focus on the framework of the utilisation of CNNs in GI endoscopy along with a short review of a few published AI-based articles in the last 4 years. 展开更多
关键词 Convolutional neural network Gastrointestinal endoscopy Artificial intelligence Deep learning Machine learning
暂未订购
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
3
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination
4
作者 Yang-Yang Wang Bin Liu Ji-Han Wang 《World Journal of Gastroenterology》 2025年第36期50-69,共20页
Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;... Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;however,its accu-racy is limited by operator dependency and interobserver variability.Advance-ments in deep learning,particularly convolutional neural networks(CNNs),show great potential for enhancing GI disease detection and classification.This review explores the application of CNNs in endoscopic imaging,focusing on polyp and tumor detection,disease classification,endoscopic ultrasound,and capsule endo-scopy analysis.We discuss the performance of CNN models with traditional dia-gnostic methods,highlighting their advantages in accuracy and real-time decision support.Despite promising results,challenges remain,including data availability,model interpretability,and clinical integration.Future directions include impro-ving model generalization,enhancing explainability,and conducting large-scale clinical trials.With continued advancements,CNN-powered artificial intelligence systems could revolutionize GI endoscopy by enhancing early disease detection,reducing diagnostic errors,and improving patient outcomes. 展开更多
关键词 Gastrointestinal diseases Endoscopic examination Deep learning Convolutional neural networks computer-aided diagnosis
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:2
5
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
6
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
Quantifying compatibility mechanisms in traditional Chinese medicine with interpretable graph neural networks 被引量:1
7
作者 Jingqi Zeng Xiaobin Jia 《Journal of Pharmaceutical Analysis》 2025年第8期1887-1901,共15页
Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphA... Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphAI)framework to quantify such mechanisms in Chinese herbal formulas(CHFs).A multidimensional TCM knowledge graph(TCM-MKG;https://zenodo.org/records/13763953)was constructed,integrating seven standardized modules:TCM terminology,Chinese patent medicines(CPMs),Chinese herbal pieces(CHPs),pharmacognostic origins(POs),chemical compounds,biological targets,and diseases.A neighbor-diffusion strategy was used to address the sparsity of compound-target associations,increasing target coverage from 12.0%to 98.7%.Graph neural networks(GNNs)with attention mechanisms were applied to 6,080 CHFs,modeled as graphs with CHPs as nodes.To embed domain-specific semantics,virtual nodes medicinal properties,i.e.,therapeutic nature,flavor,and meridian tropism,were introduced,enabling interpretable modeling of inter-CHP relationships.The model quantitatively captured classical compatibility roles such as“monarch-minister-assistant-guide”,and uncovered TCM etiological types derived from diagnostic and efficacy patterns.Model validation using 215 CHFs used for coronavirus disease 2019(COVID-19)management highlighted Radix Astragali-Rhizoma Phragmitis as a high-attention herb pair.Mass spectrometry(MS)and target prediction identified three active compounds,i.e.,methylinissolin-3-O-glucoside,corydalin,and pingbeinine,which converge on pathways such as neuroactive ligand-receptor interaction,xenobiotic response,and neuronal function,supporting their neuroimmune and detoxification potential.Given their high safety and dietary compatibility,this herb pair may offer therapeutic value for managing long COVID-19.All data and code are openly available(https://github.com/ZENGJingqi/GraphAI-for-TCM),providing a scalable and interpretable platform for TCM mechanism research and discovery of bioactive herbal constituents. 展开更多
关键词 Traditional Chinese medicine Graph neural networks Knowledge graph Compatibility mechanism Artificial intelligence Coronavirus disease 2019
暂未订购
Physics-integrated neural networks for improved mineral volumes and porosity estimation from geophysical well logs 被引量:1
8
作者 Prasad Pothana Kegang Ling 《Energy Geoscience》 2025年第2期394-410,共17页
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t... Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications. 展开更多
关键词 Physics integrated neural networks PETROPHYSICS Well logs Oil and gas Reservoir characterization MINERALOGY Machine learning
在线阅读 下载PDF
Generation of SARS-CoV-2 dual-target candidate inhibitors through 3D equivariant conditional generative neural networks 被引量:1
9
作者 Zhong-Xing Zhou Hong-Xing Zhang Qingchuan Zheng 《Journal of Pharmaceutical Analysis》 2025年第6期1291-1310,共20页
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ... Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors. 展开更多
关键词 SARS-CoV-2 Dual-target drug 3D generative neural networks Drug design
暂未订购
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
10
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology
11
作者 Han Yuan 《iRADIOLOGY》 2025年第1期47-60,共14页
Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accur... Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis. 展开更多
关键词 ATELECTASIS convolutional neural networks diagnostic radiology explainable artificial intelligence FRACTURE grad-cam integrated gradients mass PNEUMOTHORAX saliency map
在线阅读 下载PDF
Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction
12
作者 Shaoyong Hong Bo Yang +4 位作者 Yan Chen Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第7期1091-1112,共22页
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe... 3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images. 展开更多
关键词 3D reconstruction adaptive fusion X-ray imaging medical imaging deep learning neural networks sparse angles autoencoder
暂未订购
Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management
13
作者 Moein Tosan Mohammad Reza Gharib +1 位作者 Nasrin Fathollahzadeh Attar Ali Maroosi 《Computer Modeling in Engineering & Sciences》 2025年第2期1109-1154,共46页
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3... Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management. 展开更多
关键词 Artificial neural networks bibliometric analysis EVAPOTRANSPIRATION hybrid models research trends systematic literature review water resources management
在线阅读 下载PDF
MBID:A Scalable Multi-Tier Blockchain Architecture with Physics-Informed Neural Networks for Intrusion Detection in Large-Scale IoT Networks
14
作者 Saeed Ullah Junsheng Wu +3 位作者 Mian Muhammad Kamal Heba G.Mohamed Muhammad Sheraz Teong Chee Chuah 《Computer Modeling in Engineering & Sciences》 2025年第8期2647-2681,共35页
The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resour... The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resource limitations and diverse system architectures.The current conventional intrusion detection systems(IDS)face scalability problems and trust-related issues,but blockchain-based solutions face limitations because of their low transaction throughput(Bitcoin:7 TPS(Transactions Per Second),Ethereum:15-30 TPS)and high latency.The research introduces MBID(Multi-Tier Blockchain Intrusion Detection)as a groundbreaking Multi-Tier Blockchain Intrusion Detection System with AI-Enhanced Detection,which solves the problems in huge IoT networks.The MBID system uses a four-tier architecture that includes device,edge,fog,and cloud layers with blockchain implementations and Physics-Informed Neural Networks(PINNs)for edge-based anomaly detection and a dual consensus mechanism that uses Honesty-based Distributed Proof-of-Authority(HDPoA)and Delegated Proof of Stake(DPoS).The system achieves scalability and efficiency through the combination of dynamic sharding and Interplanetary File System(IPFS)integration.Experimental evaluations demonstrate exceptional performance,achieving a detection accuracy of 99.84%,an ultra-low false positive rate of 0.01% with a False Negative Rate of 0.15%,and a near-instantaneous edge detection latency of 0.40 ms.The system demonstrated an aggregate throughput of 214.57 TPS in a 3-shard configuration,providing a clear,evidence-based path for horizontally scaling to support overmillions of devices with exceeding throughput.The proposed architecture represents a significant advancement in blockchain-based security for IoT networks,effectively balancing the trade-offs between scalability,security,and decentralization. 展开更多
关键词 Internet of things blockchain intrusion detection physics-informed neural networks scalability security
在线阅读 下载PDF
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
15
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee Noel Crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 Graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks
16
作者 Sahbi Boubaker Adel Mellit +3 位作者 Nejib Ghazouani Walid Meskine Mohamed Benghanem Habib Kraiem 《Computer Modeling in Engineering & Sciences》 2025年第5期2237-2259,共23页
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d... Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations. 展开更多
关键词 MICROGRID electric vehicles charging station forecasting deep recurrent neural networks energy management system
在线阅读 下载PDF
An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks
17
作者 Ahmed Ben Atitallah Jannet Kamoun +3 位作者 Meshari D.Alanazi Turki M.Alanazi Mohammed Albekairi Khaled Kaaniche 《Computers, Materials & Continua》 2025年第6期5761-5779,共19页
Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limita... Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care. 展开更多
关键词 HISTOPATHOLOGY breast cancer convolutional neural networks BreakHis dataset medical imaging healthcare technology
暂未订购
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
18
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants Convolutional neural networks Data augmentation Optimization algorithms Model evaluation methods Deep Learning
原文传递
Spiking Neural Networks:A Comprehensive Survey of Training Methodologies,Hardware Implementations and Applications
19
作者 Ameer Hamza KHAN Xinwei CAO +4 位作者 Chunbo LUO Shiqing ZHANG Wenping GUO Vasilios NKATSIKIS Shuai LI 《Artificial Intelligence Science and Engineering》 2025年第3期175-207,共33页
Spiking neural networks(SNN)represent a paradigm shift toward discrete,event-driven neural computation that mirrors biological brain mechanisms.This survey systematically examines current SNN research,focusing on trai... Spiking neural networks(SNN)represent a paradigm shift toward discrete,event-driven neural computation that mirrors biological brain mechanisms.This survey systematically examines current SNN research,focusing on training methodologies,hardware implementations,and practical applications.We analyze four major training paradigms:ANN-to-SNN conversion,direct gradient-based training,spike-timing-dependent plasticity(STDP),and hybrid approaches.Our review encompasses major specialized hardware platforms:Intel Loihi,IBM TrueNorth,SpiNNaker,and BrainScaleS,analyzing their capabilities and constraints.We survey applications spanning computer vision,robotics,edge computing,and brain-computer interfaces,identifying where SNN provide compelling advantages.Our comparative analysis reveals SNN offer significant energy efficiency improvements(1000-10000×reduction)and natural temporal processing,while facing challenges in scalability and training complexity.We identify critical research directions including improved gradient estimation,standardized benchmarking protocols,and hardware-software co-design approaches.This survey provides researchers and practitioners with a comprehensive understanding of current SNN capabilities,limitations,and future prospects. 展开更多
关键词 spiking neural networks brain-inspired computing specialized hardware energy-efficient AI event-driven computation
在线阅读 下载PDF
Intelligent Medical Diagnosis Model Based on Graph Neural Networks for Medical Images
20
作者 Ashutosh Sharma Amit Sharma Kai Guo 《CAAI Transactions on Intelligence Technology》 2025年第4期1201-1216,共16页
Recently,numerous estimation issues have been solved due to the developments in data-driven artificial neural networks(ANN)and graph neural networks(GNN).The primary limitation of previous methodologies has been the d... Recently,numerous estimation issues have been solved due to the developments in data-driven artificial neural networks(ANN)and graph neural networks(GNN).The primary limitation of previous methodologies has been the dependence on data that can be structured in a grid format.However,physiological recordings often exhibit irregular and unordered patterns,posing a significant challenge in conceptualising them as matrices.As a result,GNNs which comprise interactive nodes connected by edges whose weights are defined by anatomical junctions or temporal relationships have received a lot of consideration by leveraging implicit data that exists in a biological system.Additionally,our study incorporates a structural GNN to effectively differentiate between different degrees of infection in both the left and right hemispheres of the brain.Subsequently,demographic data are included,and a multi-task learning architecture is devised,integrating classification and regression tasks.The trials used an authentic dataset,including 800 brain x-ray pictures,consisting of 560 instances classified as moderate cases and 240 instances classified as severe cases.Based on empirical evidence,our methodology demonstrates superior performance in classification,surpassing other comparison methods with a notable achievement of 92.27%in terms of area under the curve as well as a correlation coefficient of 0.62. 展开更多
关键词 artificial intelligence disease prediction electronic medical records graph neural networks medical imaging
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部