期刊文献+
共找到2,355篇文章
< 1 2 118 >
每页显示 20 50 100
Prediction of Enthalpies of Fusion for Divalent Rare Earth Halides Based on Modeling by Artificial Neural Networks and Pattern Recognition
1
作者 Yimin Sun Zhiyu Qiao Minghong He(Applied Science School, University of Science & Technology Beijing, Beijing 100083, China)(National Natural Science Foundation of China, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第1期24-26,共3页
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ... The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data. 展开更多
关键词 BP neural network pattern recognition enthalpy of fusion divalent rare earth halides microstructural parameters
在线阅读 下载PDF
Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 被引量:2
2
作者 Amani Tahat Jordi Marti +1 位作者 Ali Khwaldeh Kaher Tahat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期410-421,共12页
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu... In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. 展开更多
关键词 pattern recognition proton transfer chart pattern data mining artificial neural network empiricalvalence bond
原文传递
Artificial Intelligence for Speech Recognition Based on Neural Networks 被引量:3
3
作者 Takialddin Al Smadi Huthaifa A. Al Issa +1 位作者 Esam Trad Khalid A. Al Smadi 《Journal of Signal and Information Processing》 2015年第2期66-72,共7页
Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to en... Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques. 展开更多
关键词 speech recognition neural networks Artificial networks SIGNALS processing
在线阅读 下载PDF
A Hybrid Neural Network for Spatiotemporal Pattern Recognition
4
作者 曹元大 陈一峰 《Journal of Beijing Institute of Technology》 EI CAS 1996年第1期1-6,共6页
A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen... A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals. 展开更多
关键词 neural networks pattern recognition spatio-temporal pattern
在线阅读 下载PDF
A SPEECH RECOGNITION METHOD USING COMPETITIVE AND SELECTIVE LEARNING NEURAL NETWORKS
5
作者 徐雄 胡光锐 严永红 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期10-13,共4页
On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have exc... On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have excellent result in application to clusters of HMM model was also proposed. In combining the parallel, self organizational hierarchical neural networks (PSHNN) to reclassify the scores of every form output by HMM, the CSL speech recognition rate is obviously elevated. 展开更多
关键词 speech recognition COMPETITIVE LEARNING classification neural networks Document code:A
在线阅读 下载PDF
Donggan Speech Recognition Based on Convolution Neural Networks
6
作者 Haiyan Xu Yuren You Hongwu Yang 《国际计算机前沿大会会议论文集》 2019年第1期583-584,共2页
Donggan language, which is a special variant of Mandarin, is used by Donggan people in Central Asia. Donggan language includes Gansu dialect and Shaanxi dialect. This paper proposes a convolutional neural network (CNN... Donggan language, which is a special variant of Mandarin, is used by Donggan people in Central Asia. Donggan language includes Gansu dialect and Shaanxi dialect. This paper proposes a convolutional neural network (CNN) based Donggan language speech recognition method for the Donggan Shaanxi dialect. A text corpus and a pronunciation dictionary were designed for of Donggan Shannxi dialect and the corresponding speech corpus was recorded. Then the acoustic models of Donggan Shaanxi dialect was trained by CNN. Experimental results demonstrate that the recognition rate of proposed CNNbased method achieves lower word error rate than that of the monophonic hidden Markov model (HMM) based method, triphone HMM-based method and DNN- based method. 展开更多
关键词 Donggan LANGUAGE Donggan speech recognition Convolutional neural network ACOUSTIC model
在线阅读 下载PDF
Fingerprint Recognition with Artificial Neural Networks: Application to E-Learning 被引量:2
7
作者 Stephane Kouamo Claude Tangha 《Journal of Intelligent Learning Systems and Applications》 2016年第2期39-49,共11页
Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede... Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede to an automated fingerprint system for E-learning. The idea is to apply back propagation algorithm on a multilayer perceptron during the training stage. One of the advantages of this technique is the use of a hidden layer which allows the network to make comparison by calculating probabilities on template which are invariant to translation and rotation. Results come both from the NIST special database 4 and a local database, and show that a proposed method gives good results in some cases. 展开更多
关键词 neural networks pattern recognition FINGERPRINT BACK-PROPAGATION E-LEARNING
在线阅读 下载PDF
2D spiral pattern recognition based on neural network covering algorithm
8
作者 黄国宏 熊志化 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期330-333,共4页
The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal ch... The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set). 展开更多
关键词 pattern recognition neural networks max-density covering learning 2D spiral data
在线阅读 下载PDF
Fuzzy Neural Model for Flatness Pattern Recognition 被引量:13
9
作者 JIA Chun-yu SHAN Xiu-ying LIU Hong-min NIU Zhao-ping 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第6期33-38,共6页
For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-inpu... For the problems occurring in a least square method model, a fuzzy model, and a neural network model for flatness pattern recognition, a fuzzy neural network model for flatness pattern recognition with only three-input and three output signals was proposed with Legendre orthodoxy polynomial as basic pattern, based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm. The model not only had definite physical meanings in its inner nodes, but also had strong self-adaptability, anti interference ability, high recognition precision, and high velocity, thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient, practical, and novel method for flatness pattern recognition. 展开更多
关键词 FLATNESS pattern recognition Legendre orthodoxy polynomial genetic-BP algorithm fuzzy neural network
原文传递
Application of extension neural network to safety status pattern recognition of coalmines 被引量:6
10
作者 周玉 W.Pedrycz 钱旭 《Journal of Central South University》 SCIE EI CAS 2011年第3期633-641,共9页
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of... In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production. 展开更多
关键词 safety status pattern recognition extension neural network coal mines
在线阅读 下载PDF
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network 被引量:2
11
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack Radial basis function network pattern recognition neural network Machine learning
在线阅读 下载PDF
Automated Identification of Basic Control Charts Patterns Using Neural Networks 被引量:5
12
作者 Ahmed Shaban Mohammed Shalaby +1 位作者 Ehab Abdelhafiez Ashraf S. Youssef 《Journal of Software Engineering and Applications》 2010年第3期208-220,共13页
The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process i... The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process is out of statistical control and there are assignable causes for process variation that should be investigated. This paper proposes an artificial neural network algorithm to identify the three basic control chart patterns;natural, shift, and trend. This identification is in addition to the traditional statistical detection of runs in data, since runs are one of the out of control situations. It is assumed that a process starts as a natural pattern and then may undergo only one out of control pattern at a time. The performance of the proposed algorithm was evaluated by measuring the probability of success in identifying the three basic patterns accurately, and comparing these results with previous research work. The comparison showed that the proposed algorithm realized better identification than others. 展开更多
关键词 Artificial neural networks (ANN) CONTROL Charts CONTROL Charts patternS Statistical Process CONTROL (SPC) Natural pattern SHIFT pattern TREND pattern
暂未订购
A Fuzzy Neural Network for Fault Pattern Recognition 被引量:1
13
作者 PAN Zi wei, WU Chao ying Department of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, P.R.China 《International Journal of Plant Engineering and Management》 2001年第3期143-148,共6页
This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicat... This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns. 展开更多
关键词 neural network fuzzy set theory pattern recognition balling element bearing
在线阅读 下载PDF
A CASCADED MODEL OF NEURAL NETWORK FOR PATTERN RECOGNITION
14
作者 张延忻 高成群 +2 位作者 黄五群 沈琴婉 陈天伦 《Journal of Electronics(China)》 1992年第4期367-375,共9页
A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern re... A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern recognitions of multiple 3-D targets with arbitrary spatialorientations. 展开更多
关键词 neural network pattern recognition Cascaded model LEARNING algorithm Optical implementation
在线阅读 下载PDF
Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network
15
作者 常文利 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期195-199,共5页
We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of infor... We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function. 展开更多
关键词 scale-free neural network pattern recognition blurred ways
在线阅读 下载PDF
MOVING TARGETS PATTERN RECOGNITION BASED ON THE WAVELET NEURAL NETWORK
16
作者 GeGuangying ChenLili XuJianjian 《Journal of Electronics(China)》 2005年第3期321-328,共8页
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar... Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively. 展开更多
关键词 Moving targets detection pattern recognition Wavelet neural network Targets classification
在线阅读 下载PDF
Offline Handwritten Characters Recognition Using Moments Features and Neural Networks
17
作者 Mohamed Abaynarh Lahbib Zenkouar 《Computer Technology and Application》 2015年第1期19-29,共11页
In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon or... In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon orthogonal moments and neural networks classifier. We argue that, given the natural flexibility of neural network models and the extent of parallel processing that they allow, our algorithm is a step forward in character recognition. More importantly, following the approach proposed, we apply our system to two different databases, to examine the ability to recognize patterns under noise. We discover overwhelming support for different style of writing. Moreover, this basic conclusion appears to remain valid across different levels of smoothing and insensitive to the nuances of character patterns. Experiments tested the effect of set size on recognition accuracy which can reach 97.46%. The novelty of the proposed method is independence of size, slant, orientation, and translation. The performance of the proposed method is experimentally evaluated and the promising results and findings are presented. Our method is compared to K-NN (k-nearest neighbors) classifier algorithm; results show performances of our method. 展开更多
关键词 neural network character recognition orthogonal moments pattern recognition.
在线阅读 下载PDF
Adaptive learning with guaranteed stability for discrete-time recurrent neural networks 被引量:1
18
作者 邓华 吴义虎 段吉安 《Journal of Central South University of Technology》 EI 2007年第5期685-689,共5页
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim... To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm. 展开更多
关键词 recurrent neural networks adaptive learning nonlinear discrete-time systems pattern recognition
在线阅读 下载PDF
Mobile Communication Voice Enhancement Under Convolutional Neural Networks and the Internet of Things
19
作者 Jiajia Yu 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期777-797,共21页
This study aims to reduce the interference of ambient noise in mobile communication,improve the accuracy and authenticity of information transmitted by sound,and guarantee the accuracy of voice information deliv-ered ... This study aims to reduce the interference of ambient noise in mobile communication,improve the accuracy and authenticity of information transmitted by sound,and guarantee the accuracy of voice information deliv-ered by mobile communication.First,the principles and techniques of speech enhancement are analyzed,and a fast lateral recursive least square method(FLRLS method)is adopted to process sound data.Then,the convolutional neural networks(CNNs)-based noise recognition CNN(NR-CNN)algorithm and speech enhancement model are proposed.Finally,related experiments are designed to verify the performance of the proposed algorithm and model.The experimental results show that the noise classification accuracy of the NR-CNN noise recognition algorithm is higher than 99.82%,and the recall rate and F1 value are also higher than 99.92.The proposed sound enhance-ment model can effectively enhance the original sound in the case of noise interference.After the CNN is incorporated,the average value of all noisy sound perception quality evaluation system values is improved by over 21%compared with that of the traditional noise reduction method.The proposed algorithm can adapt to a variety of voice environments and can simultaneously enhance and reduce noise processing on a variety of different types of voice signals,and the processing effect is better than that of traditional sound enhancement models.In addition,the sound distortion index of the proposed speech enhancement model is inferior to that of the control group,indicating that the addition of the CNN neural network is less likely to cause sound signal distortion in various sound environments and shows superior robustness.In summary,the proposed CNN-based speech enhancement model shows significant sound enhancement effects,stable performance,and strong adapt-ability.This study provides a reference and basis for research applying neural networks in speech enhancement. 展开更多
关键词 Convolutional neural networks speech enhancement noise recognition deep learning human-computer interaction Internet of Things
在线阅读 下载PDF
A New Flatness Pattern Recognition Model Based on Cerebellar Model Articulation Controllers Network 被引量:2
20
作者 HE Hai-tao LI Yan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第5期32-36,共5页
In the traditional flatness pattern recognition neural network, the topologic configurations need to be rebuilt with a changing width of cold strip. Furthermore, the large learning assignment, slow convergence, and lo... In the traditional flatness pattern recognition neural network, the topologic configurations need to be rebuilt with a changing width of cold strip. Furthermore, the large learning assignment, slow convergence, and local minimum in the network are observed. Moreover, going by the structure of the traditional neural network, according to experience, the model is time-consuming and complex. Thus, a new approach of flatness pattern recognition is proposed based on the CMAC (cerebellar model articulation controllers) neural network. The difference in fuzzy distances between samples and the basic patterns is introduced as the input of the CMAC network. Simultaneously, the adequate learning rate is improved in the error correction algorithm of this neural network. The new approach with advantages, such as high learning speed, good generalization, and easy implementation, is efficient and intelligent. The simulation results show that the speed and accuracy of the flatness pattern recognition model are obviously im proved. 展开更多
关键词 FLATNESS pattern recognition CMAC neural network fuzzy distance
原文传递
上一页 1 2 118 下一页 到第
使用帮助 返回顶部