期刊文献+
共找到152,448篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:1
1
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation RECONSTRUCTION spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
Uncovering optogenetic and chemogenetic induction of cognitive deficits: Efficient techniques for manipulating and observing specific neural activities
2
作者 Kyoungho Suk 《Neural Regeneration Research》 2026年第1期304-305,共2页
The hippocampus is part of the brain limbic system and plays an important role in learning and memory.Moreover,its ability to form,consolidate,and retrieve different types of memories makes it a central component in t... The hippocampus is part of the brain limbic system and plays an important role in learning and memory.Moreover,its ability to form,consolidate,and retrieve different types of memories makes it a central component in the cognitive functions necessary for everyday life.Understanding the role of the hippocampus helps comprehend how memories are created,stored,and recalled and sheds light on the impact of hippocampal damage in conditions such as Alzheimer’s disease and other forms of dementia. 展开更多
关键词 ALZHEIMER EVERYDAY neural
暂未订购
Cell type-dependent role of transforming growth factor-βsignaling on postnatal neural stem cell proliferation and migration
3
作者 Kierra Ware Joshua Peter +1 位作者 Lucas McClain Yu Luo 《Neural Regeneration Research》 2026年第3期1151-1161,共11页
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn... Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo. 展开更多
关键词 adult neurogenesis DOUBLECORTIN HIPPOCAMPUS MIGRATION neural stem cells PROLIFERATION transforming growth factor-β
暂未订购
Neural circuit mechanisms of epilepsy:Maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels
4
作者 Xueqing Du Yi Wang +2 位作者 Xuefeng Wang Xin Tian Wei Jing 《Neural Regeneration Research》 2026年第2期455-465,共11页
Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at th... Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at the molecular,cellular,and neural circuit levels.Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits.The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy.Therefore,this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies,including electroencephalography,magnetic resonance imaging,optogenetics,chemogenetics,deep brain stimulation,and brain-computer interfaces.Additionally,this review discusses these mechanisms from three perspectives:structural,synaptic,and transmitter circuits.The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures,interactions within the same structure,and the maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels.These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment. 展开更多
关键词 chemical genetics hippocampus literature review neural circuits NEUROTRANSMITTER OPTOGENETICS pathogenesis SEIZURE synapses THALAMUS
暂未订购
Optogenetic approaches for neural tissue regeneration:A review of basic optogenetic principles and target cells for therapy
5
作者 Davletshin Eldar Sufianov Albert +3 位作者 Ageeva Tatyana Sufianova Galina Rizvanov Albert Mukhamedshina Yana 《Neural Regeneration Research》 2026年第2期521-533,共13页
Optogenetics has revolutionized the field of neuroscience by enabling precise control of neural activity through light-sensitive proteins known as opsins.This review article discusses the fundamental principles of opt... Optogenetics has revolutionized the field of neuroscience by enabling precise control of neural activity through light-sensitive proteins known as opsins.This review article discusses the fundamental principles of optogenetics,including the activation of both excitatory and inhibitory opsins,as well as the development of optogenetic models that utilize recombinant viral vectors.A considerable portion of the article addresses the limitations of optogenetic tools and explores strategies to overcome these challenges.These strategies include the use of adeno-associated viruses,cell-specific promoters,modified opsins,and methodologies such as bioluminescent optogenetics.The application of viral recombinant vectors,particularly adeno-associated viruses,is emerging as a promising avenue for clinical use in delivering opsins to target cells.This trend indicates the potential for creating tools that offer greater flexibility and accuracy in opsin delivery.The adaptations of these viral vectors provide advantages in optogenetic studies by allowing for the restricted expression of opsins through cell-specific promoters and various viral serotypes.The article also examines different cellular targets for optogenetics,including neurons,astrocytes,microglia,and Schwann cells.Utilizing specific promoters for opsin expression in these cells is essential for achieving precise and efficient stimulation.Research has demonstrated that optogenetic stimulation of both neurons and glial cells-particularly the distinct phenotypes of microglia,astrocytes,and Schwann cells-can have therapeutic effects in neurological diseases.Glial cells are increasingly recognized as important targets for the treatment of these disorders.Furthermore,the article emphasizes the emerging field of bioluminescent optogenetics,which combines optogenetic principles with bioluminescent proteins to visualize and manipulate neural activity in real time.By integrating molecular genetics techniques with bioluminescence,researchers have developed methods to monitor neuronal activity efficiently and less invasively,enhancing our understanding of central nervous system function and the mechanisms of plasticity in neurological disorders beyond traditional neurobiological methods.Evidence has shown that optogenetic modulation can enhance motor axon regeneration,achieve complete sensory reinnervation,and accelerate the recovery of neuromuscular function.This approach also induces complex patterns of coordinated motor neuron activity and promotes neural reorganization.Optogenetic approaches hold immense potential for therapeutic interventions in the central nervous system.They enable precise control of neural circuits and may offer new treatments for neurological disorders,particularly spinal cord injuries,peripheral nerve injuries,and other neurodegenerative diseases. 展开更多
关键词 adeno-associated virus ASTROCYTES bioluminescent optogenetics channelrhodopsins halorhodopsins MICROGLIA neural stem cells NEURONS OLIGODENDROCYTE OPTOGENETICS
暂未订购
mTORC1 and mTORC2 synergy in human neural development, disease, and regeneration
6
作者 Navroop K.Dhaliwal Julien Muffat Yun Li 《Neural Regeneration Research》 2026年第4期1552-1553,共2页
The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regul... The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health. 展开更多
关键词 m tor neural development mtorc central nervous system cns mtor neurodevelopmental disorders neurodegenerative conditions
暂未订购
Enhancing neural stem cell integration in the injured spinal cord through targeted PTEN modulation
7
作者 Simay Geniscan Hee Hwan Park +6 位作者 Hyung Soon Kim Seokjin Yoo Hyunmi Kim Byeong Seong Jang Dong Hoon Hwang Kevin K Park Byung Gon Kim 《Neural Regeneration Research》 2026年第4期1586-1594,共9页
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival a... Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury. 展开更多
关键词 graft axon growth graft survival neural stem cell PTEN regeneration spinal cord injury transplantation
暂未订购
Injury-induced KIF4A neural expression and its role in Schwann cell proliferation suggest a dual function for this kinesin in neural regeneration
8
作者 Patricia D.Correia Barbara M.de Sousa +7 位作者 Jesus Chato-Astrain Joana Paes de Faria Veronica Estrada Joao B.Relvas Hans W.Muller Victor Carriel Frank Bosse Sandra I.Vieira 《Neural Regeneration Research》 2026年第4期1607-1620,共14页
Contrary to the adult central nervous system,the peripheral nervous system has an intrinsic ability to regenerate that relies on the expression of regenerationassociated genes,such as some kinesin family members.Kines... Contrary to the adult central nervous system,the peripheral nervous system has an intrinsic ability to regenerate that relies on the expression of regenerationassociated genes,such as some kinesin family members.Kinesins contribute to nerve regeneration through the transport of specific cargo,such as proteins and membrane components,from the cell body towards the axon periphery.We show here that KIF4A,associated with neurodevelopmental disorders and previously believed to be only expressed during development,is also expressed in the adult vertebrate nervous system and up-regulated in injured peripheral nervous system cells.KIF4A is detected both in the cell bodies and regrowing axons of injured neurons,consistent with its function as an axonal transporter of cargoes such asβ1-integrin and L1CAM.Our study further demonstrates that KIF4A levels are greatly increased in Schwann cells from injured distal nerve stumps,particularly at a time when they are reprogrammed into an essential proliferative repair phenotype.Moreover,Kif4a m RNA levels were approximately~6-fold higher in proliferative cultured Schwann cells compared with non-proliferative ones.A hypothesized function for Kif4a in Schwann cell proliferation was further confirmed by Kif4a knockdown,as this significantly reduced Schwann cell proliferation in vitro.Our findings show that KIF4A is expressed in adult vertebrate nervous systems and is up-regulated following peripheral injury.The timing of KIF4A up-regulation,its location during regeneration,and its proliferative role,all suggest a dual role for this protein in neuroregeneration that is worth exploring in the future. 展开更多
关键词 axonal regrowth KIF4 kinesin nerve tissue regeneration neural regeneration peripheral nerve injury repair Schwann cells
暂未订购
Transplantation of human neural stem cells repairs neural circuits and restores neurological function in the stroke-injured brain
9
作者 Peipei Wang Peng Liu +7 位作者 Yingying Ding Guirong Zhang Nan Wang Xiaodong Sun Mingyue Li Mo Li Xinjie Bao Xiaowei Chen 《Neural Regeneration Research》 2026年第3期1162-1171,共10页
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju... Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients. 展开更多
关键词 behavioral recovery circuit repair electrophysiological properties functional integration human neural stem cell transplantation infarction volume STROKE synaptic tracing
暂未订购
Sox2-overexpressing neural stem cells alleviate ventricular enlargement and neurological dysfunction in posthemorrhagic hydrocephalus
10
作者 Baocheng Gao Haoxiang Wang +6 位作者 Shuang Hu Kunhong Zhong Xiaoyin Liu Ziang Deng Yuanyou Li Aiping Tong Liangxue Zhou 《Neural Regeneration Research》 2026年第2期769-779,共11页
Neural stem cells(NSCs)have the potential for self-renewal and multidirectional differentiation,and their transplantation has achieved good efficacy in a variety of diseases.However,only 1%-10%of transplanted NSCs sur... Neural stem cells(NSCs)have the potential for self-renewal and multidirectional differentiation,and their transplantation has achieved good efficacy in a variety of diseases.However,only 1%-10%of transplanted NSCs survive in the ischemic and hypoxic microenvironment of posthemorrhagic hydrocephalus.^(Sox2)is an important factor for NSCs to maintain proliferation.Therefore,^(Sox2)-overexpressing NSCs(NSC^(Sox2))may be more successful in improving neurological dysfunction after posthemorrhagic hydrocephalus.In this study,human NSC^(Sox2)was transplanted into a posthemorrhagic hydrocephalus mouse model,and retinoic acid was administered to further promote NSC differentiation.The results showed that NSC^(Sox2)attenuated the ventricular enlargement caused by posthemorrhagic hydrocephalus and improved neurological function.NSC^(Sox2)also promoted nerve regeneration,inhibited neuroinflammation and promoted M2 polarization(anti-inflammatory phenotype),thereby reducing cerebrospinal fluid secretion in choroid plexus.These findings suggest that NSC^(Sox2)rescued ventricular enlargement and neurological dysfunction induced by posthemorrhagic hydrocephalus through neural regeneration and modulation of inflammation. 展开更多
关键词 ANGIOGENESIS cerebrospinal fluid hippocampal transplantation inflammation MICROGLIA neural stem cells NEUROGENESIS posthemorrhagic hydrocephalus retinoic acid ^(Sox2)
暂未订购
Neural functional rehabilitation:Exploring neuromuscular reconstruction technology advancements and challenges
11
作者 Chunxiao Tang Ping Wang +3 位作者 Zhonghua Li Shizhen Zhong Lin Yang Guanglin Li 《Neural Regeneration Research》 2026年第1期173-186,共14页
Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic i... Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic injuries,and neurological diseases.Neural machine interface technology establishes direct connections with the brain or peripheral nervous system to restore impaired motor,sensory,and cognitive functions,significantly improving patients'quality of life.This review analyzes the chronological development and integration of various neural machine interface technologies,including regenerative peripheral nerve interfaces,targeted muscle and sensory reinnervation,agonist–antagonist myoneural interfaces,and brain–machine interfaces.Recent advancements in flexible electronics and bioengineering have led to the development of more biocompatible and highresolution electrodes,which enhance the performance and longevity of neural machine interface technology.However,significant challenges remain,such as signal interference,fibrous tissue encapsulation,and the need for precise anatomical localization and reconstruction.The integration of advanced signal processing algorithms,particularly those utilizing artificial intelligence and machine learning,has the potential to improve the accuracy and reliability of neural signal interpretation,which will make neural machine interface technologies more intuitive and effective.These technologies have broad,impactful clinical applications,ranging from motor restoration and sensory feedback in prosthetics to neurological disorder treatment and neurorehabilitation.This review suggests that multidisciplinary collaboration will play a critical role in advancing neural machine interface technologies by combining insights from biomedical engineering,clinical surgery,and neuroengineering to develop more sophisticated and reliable interfaces.By addressing existing limitations and exploring new technological frontiers,neural machine interface technologies have the potential to revolutionize neuroprosthetics and neurorehabilitation,promising enhanced mobility,independence,and quality of life for individuals with neurological impairments.By leveraging detailed anatomical knowledge and integrating cutting-edge neuroengineering principles,researchers and clinicians can push the boundaries of what is possible and create increasingly sophisticated and long-lasting prosthetic devices that provide sustained benefits for users. 展开更多
关键词 agonist–antagonist myoneural interface biocompatibility brain–machine interface clinical anatomy neural machine interface NEUROPROSTHETICS peripheral nerve interface PROPRIOCEPTION targeted muscle reinnervation targeted sensory reinnervation
在线阅读 下载PDF
Small extracellular vesicles derived from hair follicle neural crest stem cells enhance perineurial cell proliferation and migration via the TGF-β/SMAD/HAS2 pathway
12
作者 Yiming Huo Bing Xiao +8 位作者 Haojie Yu Yang Xu Jiachen Zheng Chao Huang Ling Wang Haiyan Lin Jiajun Xu Pengfei Yang Fang Liu 《Neural Regeneration Research》 2026年第5期2060-2072,共13页
Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration vi... Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects. 展开更多
关键词 hair follicle neural crest stem cells HAS2 MIGRATION miR-21-5p perineurial cells proliferation peripheral nerve injury SMAD7 small extracellular vesicles transforming growth factor-β/SMAD signaling pathway
暂未订购
Enhanced Mechanics in Injection Molded Isotactic Polypropylene/Polypropylene Random Copolymer Blends via Introducing Network-like Crystal Structure
13
作者 Bi-qiang Jin Xin-peng Li +4 位作者 Ming Jin Da-shan Mi Fei-fei Wang Chao Xia 张杰 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第2期164-173,共10页
The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene (iPP), polypropylene random copolymer (co-PP) and iPP/co-PP blends were inv... The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene (iPP), polypropylene random copolymer (co-PP) and iPP/co-PP blends were investigated. Differential scanning calorimetry (DSC) and dynamic rheological analysis illustrated that iPP and co-PP were compatible in the blends and co-PP uniformly dispersed in the/PP phase. Polarizing optical microscope (POM) was adopted to observe the crystal size and morphology evolution. The results of mechanical properties and scanning electron microscopy (SEM) indicated that the crystal size of iPP in iPP/co-PP blends (10 wt% co-PP + 90 wt% iPP and 30 wt% co-PP + 70 wt% iPP) radically decreased after the incorporation of co-PP. During crystallization, the molecular chain segments of co-PP could penetrate iPP spherulites and form a network-like crystalline structure. The network-like crystal structure could effectively transmit stress and consume more energy to overcome intermolecular forces to resist stretching. In this way, the strength would improve to a certain degree. The impact fracture mechanism of iPP/co-PP blends is quasi ductile fracture by multiple crazes. Our work discovered that the blends containing 10 wt% and 30 wt% ofco-PP exhibited prominent toughness and reinforcement. 展开更多
关键词 network-like Morphology TOUGHNESS Polypropylene random copolymer.
原文传递
Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis 被引量:2
14
作者 Conglin Wang Fangyuan Cheng +9 位作者 Zhaoli Han Bo Yan Pan Liao Zhenyu Yin Xintong Ge Dai Li Rongrong Zhong Qiang Liu Fanglian Chen Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第2期518-532,共15页
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)... Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes. 展开更多
关键词 AKT ASTROCYTE blood-brain barrier cerebral edema EXOSOMES human-induced pluripotent stem cells intracerebral hemorrhage neural stem cells NEUROINFLAMMATION PI3K
暂未订购
Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury 被引量:1
15
作者 Mou Gao Qin Dong +3 位作者 Dan Zou Zhijun Yang Lili Guo Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1416-1430,共15页
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ... Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury. 展开更多
关键词 Akt signaling cerebral edema closed head injury Crry CXCR4 induced neural stem cell MICROGLIA NEUROINFLAMMATION
暂未订购
Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins 被引量:1
16
作者 Daiyu Hu Yuanqing Cao +6 位作者 Chenglin Cai Guangming Wang Min Zhou Luying Peng Yantao Fan Qiong Lai Zhengliang Gao 《Neural Regeneration Research》 SCIE CAS 2025年第1期242-252,共11页
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li... Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies. 展开更多
关键词 cadmium cell death cell proliferation cortical development environmental toxins neural progenitor cells NEUROGENESIS NEUROTOXICOLOGY ORGANOIDS stem cells
暂未订购
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
17
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder 被引量:3
18
作者 Xiangyun Tian Scott J.Russo Long Li 《Neuroscience Bulletin》 2025年第2期272-288,共17页
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci... Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention. 展开更多
关键词 DEPRESSION Animal models STRESS neural circuits
原文传递
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
19
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
20
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部