期刊文献+
共找到157篇文章
< 1 2 8 >
每页显示 20 50 100
Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural Network 被引量:2
1
作者 Xu Yang 《International Journal of Automation and computing》 EI 2010年第3期271-276,共6页
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d... Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective. 展开更多
关键词 Drill wear state recognition cutting torque signals wavelet packet decomposition (WPD) Welch spectrum energy K-means cluster radial basis function neural network
在线阅读 下载PDF
Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition 被引量:2
2
作者 Reya Sharma Baijnath Kaushik +2 位作者 Naveen Kumar Gondhi Muhammad Tahir Mohammad Khalid Imam Rahmani 《Computers, Materials & Continua》 SCIE EI 2022年第6期5855-5873,共19页
Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse ap... Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse application potentials.Nowadays,different methods are available for automatic script recognition.Among most of the reported script recognition techniques,deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms.However,the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error,which renders them unfeasible.This approach often requires manual intervention with domain expertise which consumes substantial time and computational resources.To alleviate this shortcoming,this paper proposes a new neural architecture search approach based on meta-heuristic quantum particle swarm optimization(QPSO),which is capable of automatically evolving the meaningful convolutional neural network(CNN)topologies.The computational experiments have been conducted on eight different datasets belonging to three popular Indic scripts,namely Bangla,Devanagari,and Dogri,consisting of handwritten characters and digits.Empirically,the results imply that the proposed QPSO-CNN algorithm outperforms the classical and state-of-the-art methods with faster prediction and higher accuracy. 展开更多
关键词 Neuro-evolution quantum particle swarm optimization deep learning convolutional neural networks handwriting recognition
在线阅读 下载PDF
Auto recognition of carbonate microfacies based on an improved back propagation neural network
3
作者 王玉玺 刘波 +4 位作者 高计县 张学丰 李顺利 刘建强 田泽普 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3521-3535,共15页
Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation... Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time. 展开更多
关键词 carbonate microfacies quantitative recognition bayes stepwise discrimination backward propagation neural network particle swarm optimizer
在线阅读 下载PDF
Wear Debris Identification Using Feature Extraction and Neural Network
4
作者 王伟华 马艳艳 +1 位作者 殷勇辉 王成焘 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期42-45,共4页
A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical ... A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established, and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy. 展开更多
关键词 wear debris CHARACTERIZATION neural network pattern recognition.
在线阅读 下载PDF
RECOGNITION OF WEAR PARTICLES IN LUBRICATING OIL USING LVQ NEURAL CLASSIFIER
5
作者 王大东 杨德斌 徐金梧 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1996年第1期30+26-30,共6页
A technique for wear particle identification using computer vision system is described. The computer vision system employs LVQ Neural Networks as classifier to recognize the surface texture of wear particles in lubric... A technique for wear particle identification using computer vision system is described. The computer vision system employs LVQ Neural Networks as classifier to recognize the surface texture of wear particles in lubricating oil and determine the conditions of machines. The recognition process includes four stages:(1)capturing image from ferrographies containing wear particles;(2) digitising the image and extracting features;(3) learning the training data selected from the feature data set;(4) identifying the wear particles and generating the result report of machine condition classification. To verify the technique proposed here, the recognition results of several typical classes of wear particles generated at the sliding and rolling surfaces in a diesel engine are presented. 展开更多
关键词 computer vision wear particles ferrographic techniques neural networks texture classification
在线阅读 下载PDF
Wear Fault Diagnosis of Machinery Based on Neural Networks and Gray Relationships 被引量:5
6
作者 CHEN Chang zheng, LI Qing, SONG Hong ying Diagnosis and Control Center, Shenyang University of Technology, Shenyang 110023, P.R.China 《International Journal of Plant Engineering and Management》 2001年第3期164-169,共6页
In this paper, the regular characteristic of -wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typical -wear particles spectrum is established ac... In this paper, the regular characteristic of -wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typical -wear particles spectrum is established according to the equipment structure , friction and wear rule and the characteristic of 'wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship ; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification. 展开更多
关键词 wear particles identification fault diagnosis neural networks gray relationship
在线阅读 下载PDF
Prediction of wheel wear in light rail trains using an improved grey GM(1,1)model
7
作者 Yanyan ZHANG Xinwen YANG +2 位作者 Zhiang SUN Kaiwen XIANG Anguo ZUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第4期376-388,共13页
The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is su... The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is supposed to deal with this problem effectively.In this study,we propose an improved non-equidistant grey model GM(1,1)with background values optimized by a genetic algorithm(GA).While the grey model is not good enough to track data series with features of randomness and nonlinearity,the residual error series of the GA-GM(1,1)model is corrected through a back propagation neural network(BPNN).To further improve the performance of the GA-GM(1,1)-BPNN model,a particle swarm optimization(PSO)algorithm is implemented to train the weight and bias in the neural network.The traditional non-equidistant GM(1,1)model and the proposed GA-GM(1,1),GA-GM(1,1)-BPNN,and GA-GM(1,1)-PSO-BPNN models were used to predict the wheel diameter and wheel flange wear of the Changchun light rail train and their validity and rationality were verified.Benefitting from the optimization effects of the GA,neural network,and PSO algorithm,the performance ranking of the four methods from highest to lowest was GA-GM(1,1)-PSO-BPNN>GA-GM(1,1)-BPNN>GA-GM(1,1)>GM(1,1)in both the fitting and prediction zones.The GA-GM(1,1)-PSO-BPNN model performed best,with the lowest fitting and forecasting maximum relative error,mean absolute error,mean absolute percentage error,and mean squared error of all four models.Therefore,it is the most effective and stable model in field application of light rail train wheel wear prediction. 展开更多
关键词 Wheel wear prediction Grey model Genetic algorithm(GA) neural network particle swarm optimization(PSO)
原文传递
Rail profile optimization through balancing of wear and fatigue
8
作者 Binjie XU Zhiyong SHI +2 位作者 Yun YANG Jianxi WANG Kaiyun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第10期967-982,共16页
Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focus... Rail profile optimization is a critical strategy for mitigating wear and extending service life.However,damage at the wheel-rail contact surface goes beyond simple rail wear,as it also involves fatigue phenomena.Focusing solely on wear and not addressing fatigue in profile optimization can lead to the propagation of rail cracks,the peeling of material off the rail,and even rail fractures.Therefore,we propose an optimization approach that balances rail wear and fatigue for heavy-haul railway rails to mitigate rail fatigue damage.Initially,we performed a field investigation to acquire essential data and understand the characteristics of track damage.Based on theory and measured data,a simulation model for wear and fatigue was then established.Subsequently,the control points of the rail profile according to cubic non-uniform rational B-spline(NURBS)theory were set as the research variables.The rail’s wear rate and fatigue crack propagation rate were adopted as the objective functions.A multi-objective,multi-variable,and multi-constraint nonlinear optimization model was then constructed,specifically using a Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network).Ultimately,optimal solutions from the model were identified using a chaos microvariation adaptive genetic algorithm,and the effectiveness of the optimization was validated using a dynamics model and a rail damage model. 展开更多
关键词 Heavy-haul railway Rail wear Rail fatigue Levenberg Marquardt-back propagation neural network as optimized by the particle swarm optimization algorithm(PSO-LM-BP neural network) Rail profile optimization Multi-objective optimization
原文传递
WEAR PARTICLE CLASSIFICATION BASED ON BP NEUPAL NETWORK WITH FUZZY—FACTOR 被引量:1
9
作者 LiYanjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期71-76,共6页
The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The tra... The program of auto-identification of wear particles is given using aritficial neural network(ANN)technique,based on a set of debris morphology descriptor that de-scribes the shape characters of wear particles.The train-ing speed of the network with thw fuzzy-factor is muchfaster than that of the traditional methods.For esamale,the speed of training the network in this paper is increased five times in Exclusive OR problem(XORproblem)than other ways,and the debris chassification accuracy is more than 90% by this method,and the idemtification speed is very fast. 展开更多
关键词 wear particleS BP neural network fuzzy-fac-tor lubricating oilinspection DEBRIS identifi-cation 因子模糊化 BP神经网络 磨损颗粒 自动识别
在线阅读 下载PDF
基于改进RBF神经网络的人体姿态局部特征识别算法
10
作者 李燕飞 吴加宁 《吉林大学学报(工学版)》 北大核心 2025年第5期1749-1755,共7页
以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人... 以机器人的人体姿态识别问题为核心,为提高识别精度,提出一种基于改进RBF神经网络的人体姿态局部特征识别算法。利用深度相机得到人体关节点三维方位数据,归一化处理方位数据,组建关节点三维坐标;考虑到不同个体之间的差异,为实现对人体姿态数据的非线性映射和优化,准确识别不同个体姿态,采用newrbe函数构建RBF神经网络,提取人体姿态数据特征矢量,以为识别提供重要依据;为增强RBF神经网络在处理不同个体姿态差异方面的能力,确保识别的准确性和自适应性,使用粒子群优化算法改进神经网络,并通过特定概率对粒子实施遗传操作,实现网络优化得到人体姿态局部特征识别结果。实验结果表明:本文算法相对误差均较小,可维持在0.8以下,识别精度高,且在迭代次数达到20时损失函数已降至最低,收敛速度较快,可为农业机械化领域的人机交互提供扎实基础。 展开更多
关键词 改进RBF神经网络 人体姿态 局部特征识别 三维坐标 粒子群优化
原文传递
基于小波变换和PSO-LSTM的智慧教学机器人抓取识别方法
11
作者 徐文 李婷 《自动化与仪器仪表》 2025年第3期149-153,共5页
针对传统教学机器人抓取识别精度低,识别效率不高的问题,提出一种基于小波变换与粒子群算法(Particle Swarm Optimization algorithm,PSO)优化长短时记忆神经网络(Long Short-term Memory Networks,LSTM)的智慧教学机器人抓取识别方法... 针对传统教学机器人抓取识别精度低,识别效率不高的问题,提出一种基于小波变换与粒子群算法(Particle Swarm Optimization algorithm,PSO)优化长短时记忆神经网络(Long Short-term Memory Networks,LSTM)的智慧教学机器人抓取识别方法。首先,采用小波变换方法对物体移动信号进行特征提取;然后以LSTM神经网络作为基础识别网络,并采用PSO对LSTM神经网络进行优化,搭建一个基于PSO-LSTM的智慧教学机器人抓取识别模型;最后将提取特征输入至该模型中进行抓取识别。实验结果表明,本方法的抓取识别mAP分别取值为96.84%,相较于传统的SURF抓取识别方法和YOLOv5抓取识别方法,mAP分别高出了17.46%、19.04%,且本方法的抓取识别所用时间仅为8.46 s,对比于另外两种方法分别降低了13.59 s和21.17 s。由此说明,本方法能够提高抓取识别精度和效率,可为智慧教学提供参考借鉴。 展开更多
关键词 智慧教学 小波变换 粒子群优化算法 LSTM神经网络 抓取识别
原文传递
基于探地雷达与PSO−BP神经网络的煤岩界面预测研究
12
作者 张和江 张义平 +2 位作者 侯晨锋 王缪斯 周利治 《工矿自动化》 北大核心 2025年第8期80-87,共8页
针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从... 针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从而确定煤岩界面特征参数:煤占比、响应位置振幅、煤响应位置振幅平均值、振幅衰减值、反射波所用双程走时、电磁波波速和煤介电常数;根据选择的特征参数开展介电常数测试和模拟煤岩界面识别实验,获取实测样本数据;采用PSO算法对BP神经网络权值与阈值进行优化,得到最优模型;将煤岩界面特征参数输入PSO−BP神经网络模型,实现煤岩界面预测。实验结果表明:与GA−BP和BP神经网络模型相比,PSO−BP模型的均方误差(MSE)分别下降了22.14%和45.54%,平均绝对百分比误差(MAPE)分别下降了22.22%和46.15%,平均绝对误差(MAE)分别下降了31.58%和55.68%,PSO−BP在预测精度、误差控制能力和数据拟合效果上均具有显著优势,预测煤岩界面位置更贴近实际位置,稳定性更好。 展开更多
关键词 煤岩界面识别 探地雷达 BP神经网络 粒子群优化算法 PSO−BP神经网络 特征参数
在线阅读 下载PDF
基于注意力机制改进的PSO-BiLSTM刀具磨损预测
13
作者 杨沛东 黄华 +1 位作者 尉卫卫 郭宝岛 《北京航空航天大学学报》 北大核心 2025年第10期3589-3598,共10页
针对刀具磨损故障诊断中存在的监测数据单一和特征信号处理效果差的问题,提出了一种基于注意力机制(AM)改进的粒子群算法(PSO)优化双向长短时记忆(BiLSTM)神经网络来实现端到端的刀具磨损预测方法。根据传感器信号进行多域特征提取,构... 针对刀具磨损故障诊断中存在的监测数据单一和特征信号处理效果差的问题,提出了一种基于注意力机制(AM)改进的粒子群算法(PSO)优化双向长短时记忆(BiLSTM)神经网络来实现端到端的刀具磨损预测方法。根据传感器信号进行多域特征提取,构建优质的信号输入样本;利用卡尔曼滤波对输入样本进行多传感器数据融合,得到鲁棒性更高的融合数据样本,在此基础上,通过PSO对BiLSTM网络进行超参数寻优,根据优化的超参数建立神经网络模型;基于注意力机制赋予输入影响权重,改进PSO-BiLSTM以获得更好的刀具磨损预测效果。对比实验结果验证了所提模型在刀具磨损预测中的可行性,其精度相比传统深度学习方法有较大的提升。 展开更多
关键词 刀具磨损 卡尔曼滤波 粒子群算法 注意力机制 双向长短时记忆神经网络
原文传递
Improved 3-D Particle Tracking Velocimetry with Colored Particles 被引量:1
14
作者 Christian Bendicks Dominique Tarlet +4 位作者 Christoph Roloff Robert Bordás Bernd Wunderlich Bernd Michaelis Dominique Thévenin 《Journal of Signal and Information Processing》 2011年第2期59-71,共13页
The present work introduces an extension to three-dimensional Particle Tracking Velocimetry (3-D PTV) in order to investigate small-scale flow patterns. Instead of using monochrome particles the novelty over the prior... The present work introduces an extension to three-dimensional Particle Tracking Velocimetry (3-D PTV) in order to investigate small-scale flow patterns. Instead of using monochrome particles the novelty over the prior state of the art is the use of differently dyed tracer particles and the identification of particle color classes directly on Bayer raw images. Especially in the case of a three camera setup it will be shown that the number of ambiguities is dramatically decreased when searching for homologous points in different images. This refers particularly to the determination of spatial parti- cle positions and possibly to the linking of positions into trajectories. The approach allows the handling of tracer parti- cles in high numbers and is therefore perfectly suited for gas flow investigations. Although the idea is simple, difficult- ties may arise particularly in determining the color class of individual particle when its projection on a Bayer sensor is too small. Hence, it is not recommended to extract features from RGB images for color class recognition due to infor- mation loss during the Bayer demosaicing process. This article demonstrates how to classify the color of small sized tracers directly on Bayer raw images. 展开更多
关键词 particle Tracking VELOCIMETRY COLOR recognition Artificial neural network PHOTOGRAMMETRY
暂未订购
基于GM(1,1)-IPSO-BP的重载铁路小半径曲线钢轨磨耗预测方法 被引量:1
15
作者 张斌 高玉祥 +2 位作者 陈再刚 王开云 时瑾 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第11期115-122,131,共9页
为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到... 为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到实测磨耗序列的初步预测结果;然后,利用IPSO算法对BP神经网络的权值和阈值进行自动寻优,对GM(1,1)模型初步预测序列的残差进行校正;最后,将优化后的两种模型组合构建基于GM(1,1)-IPSO-BP的重载铁路小半径曲线地段钢轨磨耗量预测模型。以某重载铁路桥上半径400 m曲线为例,利用长期的磨耗监测数据进行方法的适用性分析,研究结果表明:GM(1,1)-IPSO-BP模型克服了磨耗数据的非线性、随机性特征对计算结果的影响,预测精度优于单独使用GM(1,1)、IPSO-BP模型;背景值优化后的GM(1,1)模型预测准确性更可靠;IPSO优化算法提高了BP神经网络计算的精度和速度;预测结果和实测数据之间的相对误差不大于4%;在预测区间上的绝对误差小于0.4 mm,运用该方法能够较准确地得到钢轨磨耗的发展规律。研究结果可为重载铁路小半径曲线钢轨的精准维修和科学使用提供参考。 展开更多
关键词 钢轨磨耗 GM(1 1)模型 小半径曲线 BP神经网络 重载铁路 粒子群算法
在线阅读 下载PDF
一个用于磨粒图像快速分类的轻量化CNN模型 被引量:4
16
作者 刘信良 陈国宁 +2 位作者 苏化 王静秋 王晓雷 《润滑与密封》 CAS CSCD 北大核心 2024年第10期102-107,共6页
针对磨粒分析CNN模型存在参数多、运算速度慢、难以实际应用等问题,开展磨粒图像分类CNN模型的轻量化研究。通过分析模型各层的参数量、运算量和剪枝敏感度,确定卷积层4和卷积层5为滤波器剪枝的目标;对卷积层4和5所有滤波器重要性进行... 针对磨粒分析CNN模型存在参数多、运算速度慢、难以实际应用等问题,开展磨粒图像分类CNN模型的轻量化研究。通过分析模型各层的参数量、运算量和剪枝敏感度,确定卷积层4和卷积层5为滤波器剪枝的目标;对卷积层4和5所有滤波器重要性进行计算并排序,以75%的剪枝率去除重要性低的滤波器并重新训练,获得轻量化模型。实验结果表明,轻量化后的模型在保证准确率几乎不降低的情况下实现了磨粒图像的快速分类,其理论参数量和内存占用量均减少50%以上,运算速度提高20%以上。研究结果为CNN模型在便携式、移动式铁谱分析设备上的应用提供参考。 展开更多
关键词 铁谱分析 卷积神经网络 磨粒图像分类 轻量化
在线阅读 下载PDF
基于双路并行卷积信息融合的刀具磨损识别 被引量:3
17
作者 赵东旭 袁志响 +3 位作者 易思广 潘加港 张云鹏 卢文壮 《现代制造工程》 CSCD 北大核心 2024年第1期124-129,共6页
针对机械加工现场环境复杂多变,使用单一信号进行刀具磨损识别难以获取全面的刀具磨损特征信息的问题,提出一种同时利用声音信号和工件表面图像信息结合深度学习网络识别刀具磨损状态的方法。首先采集铣削加工过程中声音信号和工件表面... 针对机械加工现场环境复杂多变,使用单一信号进行刀具磨损识别难以获取全面的刀具磨损特征信息的问题,提出一种同时利用声音信号和工件表面图像信息结合深度学习网络识别刀具磨损状态的方法。首先采集铣削加工过程中声音信号和工件表面图像数据,然后使用双路并行卷积神经网络对声音信号和工件表面图像进行特征提取及融合,最后进行刀具磨损识别。结果表明,和单一信号识别结果相比,采用信息融合方法能获取更全面的刀具磨损特征信息,有利于增强刀具磨损识别效果,且刀具磨损识别准确率和F1-score均在95%以上,能有效识别刀具磨损状况。 展开更多
关键词 刀具磨损 磨损识别 信息融合 双路卷积神经网络
在线阅读 下载PDF
42CrMo钢精密切削的刀具磨损量预测研究 被引量:1
18
作者 成钢 唐昆 +4 位作者 刘庞中 刘子聪 袁剑平 胡永乐 毛聪 《工具技术》 北大核心 2024年第3期138-143,共6页
针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积... 针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积核等进行优化,结合CNN网络特征提取能力强、LSTM网络具备记忆能力的特点,对实际加工实验的刀具磨损量进行预测,并通过误差评价指标分析,与CNN、LSTM、BP等单一模型以及PSO-GRNN组合模型进行预测效果对比研究。研究结果表明,本文构建的组合预测模型相对于单一预测模型,其预测值与真实值吻合程度更高;相对于PSO-GRNN组合模型,三种误差评价指标的误差值至少降低了27%,其泛化性和稳定性较好,预测精度与非线性拟合能力更强。 展开更多
关键词 刀具磨损量 组合预测模型 量子粒子群算法优化 卷积神经网络 长短期神经网络
在线阅读 下载PDF
基于粒子群优化深度置信网络的气体绝缘金属封闭开关设备局部放电模式识别 被引量:4
19
作者 杨威 倪庞 +2 位作者 张安安 张亮 龚泽民 《科学技术与工程》 北大核心 2024年第29期12604-12613,共10页
气体绝缘金属封闭开关设备(gas insulated metal-enclosed switchgear,GIS)局部放电模式识别是其绝缘缺陷诊断和状态评估的重要部分,为实现放电类型的准确识别,提出了一种基于粒子群优化(particle swarm optimization,PSO)深度置信网络(... 气体绝缘金属封闭开关设备(gas insulated metal-enclosed switchgear,GIS)局部放电模式识别是其绝缘缺陷诊断和状态评估的重要部分,为实现放电类型的准确识别,提出了一种基于粒子群优化(particle swarm optimization,PSO)深度置信网络(deep belief network,DBN)的局部放电模式识别方法。该方法通过PSO算法对DBN网络的权值参数进行优化,提高网络对局部放电特征的学习能力。首先,选取现场多平台的4种GIS局部放电类型监测数据组成样本集,用于对所提方法进行分析;其次,用改进的PSO算法结合样本数据确定DBN网络的初始最优权值参数,建立初始DBN网络;然后,利用训练样本对初始DBN网络进行训练,得到局部放电识别模型。最后,基于渤海油田岸电海上动力平台GIS的局部放电数据,采用多种不同局部放电识别模型对数据样本进行算例分析,结果表明:所提的PSO-DBN模型可有效识别GIS设备局部放电类型,相较于传统的DBN网络、多层前馈神经网络(back propagation,BP)、支持向量机(support vector machine,SVM)和卷积神经网络(convolutional neural networks,CNN)具有更高的准确识别率。 展开更多
关键词 气体绝缘金属封闭开关设备(GIS) 局部放电 粒子群优化 深度置信网络 模式识别
在线阅读 下载PDF
基于主成分分析-粒子群优化算法-支持向量机的混合气体分类识别方法研究 被引量:2
20
作者 王鑫 张福群 张金萍 《职业卫生与应急救援》 2024年第5期633-638,689,共7页
目的解决多传感器设备在混合气体识别率和预测精度方面存在的问题,提高对混合气体的检测准确度,保障接触危险气体的作业人员的安全。方法采用了美国加州大学尔湾分校(UCI)的“动态气体混合物中的气体传感器阵列”公共数据集,使用MATLAB ... 目的解决多传感器设备在混合气体识别率和预测精度方面存在的问题,提高对混合气体的检测准确度,保障接触危险气体的作业人员的安全。方法采用了美国加州大学尔湾分校(UCI)的“动态气体混合物中的气体传感器阵列”公共数据集,使用MATLAB 2021b软件进行仿真测试。数据集的传感器阵列包括16个传感器。使用70个一氧化碳气体样本、80个乙烯气体样本、70个空气样本、80个一氧化碳与乙烯混合气体样本,共300个气体样本进行训练。提出了一种基于机器学习和传感器阵列技术的可燃混合气体分类方法,该方法首先利用主成分分析(principal component analysis,PCA)来降低输入数据的维数,再采用粒子群优化(particle swarm optimization,PSO)算法对支持向量机(support vector machine,SVM)的超参数进行优化,然后与未经优化的SVM法与未经优化的BP神经网络法所得出的气体识别分类结果进行对比。结果数据集经过PCA处理后将原始数据从16维降为4维,累计贡献率达到99%以上。该算法在空气、一氧化碳、混合气体和乙烯4种气体的定性识别中,准确率达到100%(50/50),分别比未经优化的SVM法准确率(90%,45/50)和BP网络法准确率(98%,49/50)高10%和2%。结论基于主成分分析-粒子群优化算法-支持向量机方法能够准确地对混合气体进行识别和分类,提高传感器报警速度与准确度,及时发现生产中可能存在的危险。但对组分更复杂的气体的识别效率和准确性,仍须进一步研究。 展开更多
关键词 混合气体 分类识别 传感器阵列 主成分分析 粒子群优化 支持向量机 BP神经网络 预测
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部