A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ...In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.展开更多
A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct...A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.展开更多
This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM para...This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided.展开更多
A novel approach by introducing a statistical parameter to estimate the severity of incipient stator inter-turn short circuit(ITSC)faults in induction motors(IMs)is proposed.Determining the incipient ITSC fault and it...A novel approach by introducing a statistical parameter to estimate the severity of incipient stator inter-turn short circuit(ITSC)faults in induction motors(IMs)is proposed.Determining the incipient ITSC fault and its severity is challenging for several reasons.The stator currents in the healthy and faulty cases are highly similar during the primary stage of the fault.Moreover,the conventional statistical parameters resulting from the analysis of fault signals do not consistently show a systematic variation with respect to the increase in fault intensity.The objective of this study is the early detection of incipient ITSC faults.Furthermore,it aims to determine the percentage of shorted turns in the faulty phase,which acts as an indicator for severe damage to the stator winding.Modeling of the motor in healthy and defective cases is performed using the Clarke Concordia transform.A discrete wavelet transform is applied to the motor currents using a Daubechies-8 wavelet.The statistical parameters L1 and L2 norms are computed for the detailed coefficients.These parameters are obtained under a variety of loads and defects to acquire the most accurate and generalized features related to the fault.Combining L1 and L2 norms creates a novel statistical parameter with notable characteristics to achieve the research aim.An artificial neural network-based back propagation algorithm is employed as a classifier to implement the classification process.The classifier output defines the percentage of defective turns with a high level of accuracy.The competency of the adopted methodology is validated via simulations and experiments.The results confirm the merits of the proposed method,with a classification test correctness of 95.29%.展开更多
The high-frequency(HF)modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system.In this study,a physics informed neural network-based HF...The high-frequency(HF)modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system.In this study,a physics informed neural network-based HF modeling method,which has the merits of high accuracy,good versatility,and simple parameterization,is proposed.The proposed model of the induction motor consists of a three-phase equivalent circuit with eighteen circuit elements per phase to ensure model accuracy.The per phase circuit structure is symmetric concerning its phase-start and phase-end points.This symmetry enables the proposed model to be applicable for both star-and delta-connected induction motors without having to recalculate the circuit element values when changing the motor connection from star to delta and vice versa.Motor physics knowledge,namely per-phase impedances,are used in the artificial neural network to obtain the values of the circuit elements.The parameterization can be easily implemented within a few minutes using a common personal computer(PC).Case studies verify the effectiveness of the proposed HF modeling method.展开更多
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot...A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme.展开更多
Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are elim...Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.展开更多
Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to...Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed.展开更多
In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, arti...In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, artificial neural network and adaptive neuro-fuzzy inference system (ANFIS). The simulated results obtained demonstrate the feasibility of the adaptive network-based fuzzy inference system based direct torque control (ANFIS-DTC). Compared with the classical direct torque control, fuzzy logic based direct torque control (FL-DTC), and neural networks based direct torque control (NN- DTC), the proposed ANFIS-based scheme optimizes the electromagnetic torque and stator flux ripples, and incurs much shorter execution times and hence the errors caused by control time delays are minimized. The validity of the proposed methods is confirmed by simulation results.展开更多
Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct ...Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct torque control (DTC) as an alternative to conventional methods of control by pulse width modulation (PWM) and by Field oriented control (FOC), so the application of the DTC based on artificial intelligence can show more advantages and simplified control algorithms with high performance. For this reason, the objectives of this paper can be divided into two parts, the first part is to apply neural networks and fuzzy logic techniques to the DTC control in the presence of a loop speed control comparing to the conventional regulators (as PI) to show the feasibility of these approaches, the second part is to further improve the performance of the neural network by using a neural-fuzzy regulator which combine the advantages of two techniques. Simulation results confirm the validity of the proposed techniques.展开更多
Online estimation of rotor resistance is essen- tial for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. N...Online estimation of rotor resistance is essen- tial for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. Neural based estimators are now receiving active con- sideration as they have a number of advantages over conventional techniques. The training algorithm of the neural network determines its learning speed, stability, weight convergence, accuracy of estimation, speed of tracking and ease of implementation. In this paper, the neural estimator has been studied with conventional and proposed learning algorithms. The sensitivity of the rotor resistance change has been tested for a wide range of variation from -50% to +50% on the stability of the drive system with and without estimator. It is quiet appealing to settle with optimal estimation time and error for the viable realization. The study is conducted extensively for estimation and tracking. The proposed learning algorithm is found to exhibit good estimation and tracking capabilities. Besides, it reduces computational complexity and, hence, more feasible for practical digital implementa- tion.展开更多
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
文摘In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.
文摘A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.
基金This project was supported by the National Natural Science Foundation of China (No. 69874086).
文摘This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided.
文摘A novel approach by introducing a statistical parameter to estimate the severity of incipient stator inter-turn short circuit(ITSC)faults in induction motors(IMs)is proposed.Determining the incipient ITSC fault and its severity is challenging for several reasons.The stator currents in the healthy and faulty cases are highly similar during the primary stage of the fault.Moreover,the conventional statistical parameters resulting from the analysis of fault signals do not consistently show a systematic variation with respect to the increase in fault intensity.The objective of this study is the early detection of incipient ITSC faults.Furthermore,it aims to determine the percentage of shorted turns in the faulty phase,which acts as an indicator for severe damage to the stator winding.Modeling of the motor in healthy and defective cases is performed using the Clarke Concordia transform.A discrete wavelet transform is applied to the motor currents using a Daubechies-8 wavelet.The statistical parameters L1 and L2 norms are computed for the detailed coefficients.These parameters are obtained under a variety of loads and defects to acquire the most accurate and generalized features related to the fault.Combining L1 and L2 norms creates a novel statistical parameter with notable characteristics to achieve the research aim.An artificial neural network-based back propagation algorithm is employed as a classifier to implement the classification process.The classifier output defines the percentage of defective turns with a high level of accuracy.The competency of the adopted methodology is validated via simulations and experiments.The results confirm the merits of the proposed method,with a classification test correctness of 95.29%.
文摘The high-frequency(HF)modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system.In this study,a physics informed neural network-based HF modeling method,which has the merits of high accuracy,good versatility,and simple parameterization,is proposed.The proposed model of the induction motor consists of a three-phase equivalent circuit with eighteen circuit elements per phase to ensure model accuracy.The per phase circuit structure is symmetric concerning its phase-start and phase-end points.This symmetry enables the proposed model to be applicable for both star-and delta-connected induction motors without having to recalculate the circuit element values when changing the motor connection from star to delta and vice versa.Motor physics knowledge,namely per-phase impedances,are used in the artificial neural network to obtain the values of the circuit elements.The parameterization can be easily implemented within a few minutes using a common personal computer(PC).Case studies verify the effectiveness of the proposed HF modeling method.
文摘A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme.
文摘Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.
文摘Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed.
文摘In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, artificial neural network and adaptive neuro-fuzzy inference system (ANFIS). The simulated results obtained demonstrate the feasibility of the adaptive network-based fuzzy inference system based direct torque control (ANFIS-DTC). Compared with the classical direct torque control, fuzzy logic based direct torque control (FL-DTC), and neural networks based direct torque control (NN- DTC), the proposed ANFIS-based scheme optimizes the electromagnetic torque and stator flux ripples, and incurs much shorter execution times and hence the errors caused by control time delays are minimized. The validity of the proposed methods is confirmed by simulation results.
文摘Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct torque control (DTC) as an alternative to conventional methods of control by pulse width modulation (PWM) and by Field oriented control (FOC), so the application of the DTC based on artificial intelligence can show more advantages and simplified control algorithms with high performance. For this reason, the objectives of this paper can be divided into two parts, the first part is to apply neural networks and fuzzy logic techniques to the DTC control in the presence of a loop speed control comparing to the conventional regulators (as PI) to show the feasibility of these approaches, the second part is to further improve the performance of the neural network by using a neural-fuzzy regulator which combine the advantages of two techniques. Simulation results confirm the validity of the proposed techniques.
文摘Online estimation of rotor resistance is essen- tial for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. Neural based estimators are now receiving active con- sideration as they have a number of advantages over conventional techniques. The training algorithm of the neural network determines its learning speed, stability, weight convergence, accuracy of estimation, speed of tracking and ease of implementation. In this paper, the neural estimator has been studied with conventional and proposed learning algorithms. The sensitivity of the rotor resistance change has been tested for a wide range of variation from -50% to +50% on the stability of the drive system with and without estimator. It is quiet appealing to settle with optimal estimation time and error for the viable realization. The study is conducted extensively for estimation and tracking. The proposed learning algorithm is found to exhibit good estimation and tracking capabilities. Besides, it reduces computational complexity and, hence, more feasible for practical digital implementa- tion.