期刊文献+
共找到263篇文章
< 1 2 14 >
每页显示 20 50 100
INDUCTION MOTOR SPEED CONTROL SYSTEM BASED ON FUZZY NEURAL NETWORK 被引量:1
1
作者 徐小增 李叶松 秦忆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期195-199,共5页
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin... A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness. 展开更多
关键词 induction motor fuzzy neural network vector control speed control system
在线阅读 下载PDF
Single Phase Induction Motor Drive with Restrained Speed and Torque Ripples Using Neural Network Predictive Controller
2
作者 S. Saravanan K. Geetha 《Circuits and Systems》 2016年第11期3670-3684,共15页
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ... In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software. 展开更多
关键词 Dynamic Model Low Torque Ripples neural Model neural network Predictive Controller Unstable Operation Single Phase induction motor Variable speed Drives
在线阅读 下载PDF
Application of Diagonal Recurrent Neural Network toDC Motor Speed Control Systems
3
作者 Jing Wang Hui Chen Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第1期68-71,共4页
A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct... A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller. 展开更多
关键词 diagonal recurrent neural network PI controller DC motor speed control system
在线阅读 下载PDF
Speed-Sensorless Control Using Elman Neural Network 被引量:1
4
作者 谢庆国 万淑芸 +2 位作者 易燕春 赵金 沈轶 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第4期53-58,共6页
This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM para... This paper describes a modified speed-sensorless control for induction motor (IM) based on space vector pulse width modulation and neural network. An Elman ANN method to identify the IM speed is proposed, with IM parameters employed as associated elements. The BP algorithm is used to provide an adaptive estimation of the motor speed. The effectiveness of the proposed method is verified by simulation results. The implementation on TMS320F240 fixed DSP is provided. 展开更多
关键词 ALGORITHMS Computer simulation Digital signal processing induction motors neural networks Pulse width modulation
在线阅读 下载PDF
Stator Fault Diagnosis of Induction Motor Based on Discrete Wavelet Analysis and Neural Network Technique 被引量:3
5
作者 Abdelelah Almounajjed Ashwin Kumar Sahoo +1 位作者 Mani Kant Kumar Sanjeet Kumar Subudhi 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期142-157,共16页
A novel approach by introducing a statistical parameter to estimate the severity of incipient stator inter-turn short circuit(ITSC)faults in induction motors(IMs)is proposed.Determining the incipient ITSC fault and it... A novel approach by introducing a statistical parameter to estimate the severity of incipient stator inter-turn short circuit(ITSC)faults in induction motors(IMs)is proposed.Determining the incipient ITSC fault and its severity is challenging for several reasons.The stator currents in the healthy and faulty cases are highly similar during the primary stage of the fault.Moreover,the conventional statistical parameters resulting from the analysis of fault signals do not consistently show a systematic variation with respect to the increase in fault intensity.The objective of this study is the early detection of incipient ITSC faults.Furthermore,it aims to determine the percentage of shorted turns in the faulty phase,which acts as an indicator for severe damage to the stator winding.Modeling of the motor in healthy and defective cases is performed using the Clarke Concordia transform.A discrete wavelet transform is applied to the motor currents using a Daubechies-8 wavelet.The statistical parameters L1 and L2 norms are computed for the detailed coefficients.These parameters are obtained under a variety of loads and defects to acquire the most accurate and generalized features related to the fault.Combining L1 and L2 norms creates a novel statistical parameter with notable characteristics to achieve the research aim.An artificial neural network-based back propagation algorithm is employed as a classifier to implement the classification process.The classifier output defines the percentage of defective turns with a high level of accuracy.The competency of the adopted methodology is validated via simulations and experiments.The results confirm the merits of the proposed method,with a classification test correctness of 95.29%. 展开更多
关键词 Discrete wavelet transform induction motor inter-turn short circuit fault neural networks statistical parameters
原文传递
Physics Informed Neural Network-based High-frequency Modeling of Induction Motors 被引量:1
6
作者 Zhenyu Zhao Fei Fan +4 位作者 Quqin Sun Huamin Jie Zhou Shu Wensong Wang Kye Yak See 《Chinese Journal of Electrical Engineering》 CSCD 2022年第4期30-38,共9页
The high-frequency(HF)modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system.In this study,a physics informed neural network-based HF... The high-frequency(HF)modeling of induction motors plays a key role in predicting the motor terminal overvoltage and conducted emissions in a motor drive system.In this study,a physics informed neural network-based HF modeling method,which has the merits of high accuracy,good versatility,and simple parameterization,is proposed.The proposed model of the induction motor consists of a three-phase equivalent circuit with eighteen circuit elements per phase to ensure model accuracy.The per phase circuit structure is symmetric concerning its phase-start and phase-end points.This symmetry enables the proposed model to be applicable for both star-and delta-connected induction motors without having to recalculate the circuit element values when changing the motor connection from star to delta and vice versa.Motor physics knowledge,namely per-phase impedances,are used in the artificial neural network to obtain the values of the circuit elements.The parameterization can be easily implemented within a few minutes using a common personal computer(PC).Case studies verify the effectiveness of the proposed HF modeling method. 展开更多
关键词 Equivalent circuit high-frequency(HF)modeling induction motor PARAMETERIZATION physics informed neural network
原文传递
Implementation of Adaptive Neuro Fuzzy Inference System in Speed Control of Induction Motor Drives
7
作者 K. Naga Sujatha K. Vaisakh 《Journal of Intelligent Learning Systems and Applications》 2010年第2期110-118,共9页
A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of mot... A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learning capability of neural networks. The various functional blocks of the system which govern the system behavior for small variations about the operating point are derived, and the transient responses are presented. The proposed (ANFIS) controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. The obtained results demonstrate the effectiveness of the proposed control scheme. 展开更多
关键词 ANFIS CONTROLLER PI CONTROLLER Fuzzy LOGIC CONTROLLER Artificial neural network CONTROLLER induction motor DRIVE
在线阅读 下载PDF
Intelligence Based Soft Starting Scheme for the Three Phase Squirrel Cage Induction Motor with Extinction Angle AC Voltage Controller
8
作者 A. A. Mohamed Faizal P. Subburaj 《Circuits and Systems》 2016年第9期2752-2770,共19页
Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are elim... Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising. 展开更多
关键词 SEMICONDUCTOR Artificial neural network Fuzzy Logic Control Three Phase Squirrel Cage induction motor
在线阅读 下载PDF
Direct-Torque Neuro-Fuzzy Control of Induction Motor 被引量:3
9
作者 XU Jun - peng CHEN Yan- feng LI Guo - hou 《河南科技学院学报》 2007年第3期62-65,共4页
Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to... Fuzzy systems are currently being used in a wide field of industrial and scientific applications.Since the design and especially the optimization process of fuzzy systems can be very time consuming,it is convenient to have algorithms which construct and optimize them automatically.In order to improve the system stability and raise the response speed,a new control scheme,direct-torque neuro-fuzzy control for induction motor drive,was put forward.The design and tuning procedure have been described.Also,the improved stator flux estimation algorithm,which guarantees eccentric estimated flux has been proposed. 展开更多
关键词 感应电动机 神经模糊系统 神经网络 直接转矩控制
在线阅读 下载PDF
Comparative study of various artificial intelligence approaches applied to direct torque control of induction motor drives 被引量:1
10
作者 Moulay Rachid DOUIRI Mohamed CHERKAOUI 《Frontiers in Energy》 SCIE CSCD 2013年第4期456-467,共12页
In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, arti... In this paper, three intelligent approaches were proposed, applied to direct torque control (DTC) of induction motor drive to replace conventional hysteresis comparators and selection table, namely fuzzy logic, artificial neural network and adaptive neuro-fuzzy inference system (ANFIS). The simulated results obtained demonstrate the feasibility of the adaptive network-based fuzzy inference system based direct torque control (ANFIS-DTC). Compared with the classical direct torque control, fuzzy logic based direct torque control (FL-DTC), and neural networks based direct torque control (NN- DTC), the proposed ANFIS-based scheme optimizes the electromagnetic torque and stator flux ripples, and incurs much shorter execution times and hence the errors caused by control time delays are minimized. The validity of the proposed methods is confirmed by simulation results. 展开更多
关键词 adaptive neuro-fuzzy inference system (ANFIS) artificial neural network direct torque control (DTC) fuzzy logic induction motor
原文传递
Comparative Study of the DTC-IM Speed Controller Based on Artificial Intelligence
11
作者 Fethia Hamidia Abdelakader Larabi Mohamed Seghir Boucherit 《Computer Technology and Application》 2012年第5期347-352,共6页
Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct ... Recently, artificial intelligence technique is increasingly receiving attention in solving complex and practical problem and they are widely applying in electrical machine domain. The authors consider also the direct torque control (DTC) as an alternative to conventional methods of control by pulse width modulation (PWM) and by Field oriented control (FOC), so the application of the DTC based on artificial intelligence can show more advantages and simplified control algorithms with high performance. For this reason, the objectives of this paper can be divided into two parts, the first part is to apply neural networks and fuzzy logic techniques to the DTC control in the presence of a loop speed control comparing to the conventional regulators (as PI) to show the feasibility of these approaches, the second part is to further improve the performance of the neural network by using a neural-fuzzy regulator which combine the advantages of two techniques. Simulation results confirm the validity of the proposed techniques. 展开更多
关键词 Direct torque control induction motor neural network FUZZY PI.
在线阅读 下载PDF
A modified neural learning algorithm for online resistance estimation in vector controlled induction drives rotor motor 被引量:1
12
作者 A. CHITRA S. HIMAVATHI 《Frontiers in Energy》 SCIE CSCD 2015年第1期22-30,共9页
Online estimation of rotor resistance is essen- tial for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. N... Online estimation of rotor resistance is essen- tial for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. Neural based estimators are now receiving active con- sideration as they have a number of advantages over conventional techniques. The training algorithm of the neural network determines its learning speed, stability, weight convergence, accuracy of estimation, speed of tracking and ease of implementation. In this paper, the neural estimator has been studied with conventional and proposed learning algorithms. The sensitivity of the rotor resistance change has been tested for a wide range of variation from -50% to +50% on the stability of the drive system with and without estimator. It is quiet appealing to settle with optimal estimation time and error for the viable realization. The study is conducted extensively for estimation and tracking. The proposed learning algorithm is found to exhibit good estimation and tracking capabilities. Besides, it reduces computational complexity and, hence, more feasible for practical digital implementa- tion. 展开更多
关键词 neural networks back propagation (BP) rotorresistance estimators vector control induction motor
原文传递
融合CNN与变异系数法的感应电机故障诊断研究
13
作者 李耀华 高赛 +7 位作者 徐志雄 郭伟超 王钦政 王自臣 种国臣 黄汉旋 张茜 刘亚辉 《微特电机》 2025年第11期55-60,共6页
为解决传统电机进行转子断条故障诊断信号特征分析时,存在过于依赖先验知识与人工经验等问题,提出融合卷积神经网络(convolutional neural network,CNN)与变异系数的感应电机故障诊断方法。利用感应电机三相电流平方和的时域图,建立卷... 为解决传统电机进行转子断条故障诊断信号特征分析时,存在过于依赖先验知识与人工经验等问题,提出融合卷积神经网络(convolutional neural network,CNN)与变异系数的感应电机故障诊断方法。利用感应电机三相电流平方和的时域图,建立卷积神经网络采用图像辨识进行故障诊断,并针对图像区分不明显的故障,融合变异系数进行故障诊断。经过测试,该方法可实现对正常状态、短路环故障、一根导条断裂和两根导条断裂的精确识别。三相电流平方和时域图反映出不同工况下感应电机的故障特征,采用图像辨识进行故障诊断,在图像区分不明显的问题。融合CNN与变异系数结合两者优势,可准确识别电机不同故障。 展开更多
关键词 CNN 变异系数 感应电机 故障诊断
在线阅读 下载PDF
基于卷积神经网络的刮板输送机智能调速系统设计 被引量:1
14
作者 张鹏 《煤矿机械》 2025年第8期42-45,共4页
针对综采工作面煤层厚薄不均匀、煤量负载不确定以及刮板输送机电能浪费严重等问题,提出了一种刮板输送机智能调速方案。根据采煤机截割电机电流与煤量负载之间的正相关关联,设计基于一维卷积神经网络的离线控制器,提取表征煤量负载的... 针对综采工作面煤层厚薄不均匀、煤量负载不确定以及刮板输送机电能浪费严重等问题,提出了一种刮板输送机智能调速方案。根据采煤机截割电机电流与煤量负载之间的正相关关联,设计基于一维卷积神经网络的离线控制器,提取表征煤量负载的特征参数,建立采煤机截割电机电流与刮板输送机驱动电机电流的非线性映射关系。基于OPC UA数据交互,设计离线和在线控制系统,利用离线控制实时预测煤量负载,并通过在线控制实现刮板输送机的智能调速。该系统为刮板输送机智能控制提供一种新的思路,有助于提高煤矿生产安全与效益。 展开更多
关键词 刮板输送机 智能调速系统 卷积神经网络 截割电机电流
原文传递
电动汽车电机调速系统的非线性鲁棒控制
15
作者 罗正华 陈昌涛 +1 位作者 易小淋 曹文 《机械设计与研究》 北大核心 2025年第3期285-292,共8页
电池储能基于经典磁场定向控制调速方案的电动汽车永磁同步电机调速系统在面对系统参数变化或外部干扰时,其跟踪性能和瞬态性能往往表现出较差的鲁棒性,这使得其难以适应在对跟踪精度要求较高的应用。为此,提出一种电动汽车电机调速系... 电池储能基于经典磁场定向控制调速方案的电动汽车永磁同步电机调速系统在面对系统参数变化或外部干扰时,其跟踪性能和瞬态性能往往表现出较差的鲁棒性,这使得其难以适应在对跟踪精度要求较高的应用。为此,提出一种电动汽车电机调速系统的非线性鲁棒控制方法,在电机调速系统的速度反馈控制回路中引入滑模控制器,并与在线训练的小波神经网络控制器相结合构成非线性鲁棒控制器,利用小波神经网络逼近各种非线性函数,从而获得更好的解耦控制特性和高精度速度跟踪性能。首先,对基于磁场定向控制的永磁同步电机调速系统进行动力学建模;然后,将滑模控制与小波神经网络控制结合,构建拥有强鲁棒能力的调速控制器;最后,借助仿真和样机验证对所提控制器的鲁棒能力进行验证。实验结果表明:在永磁同步电机参数不确定性和外部负载干扰存在的情况下,所提出的电动汽车电机调速系统的非线性鲁棒控制器具有鲁棒的模型跟踪响应和良好的调节特性。同时,引入小波神经网络的控制器比仅使用滑模控制器时拥有更好的调速精度和更快的响应速度。 展开更多
关键词 电动汽车调速系统 永磁同步电机 非线性鲁棒控制 滑模控制器 在线训练的小波神经网络
原文传递
模糊神经网络在机电调平系统上的应用
16
作者 张盼盼 郭彦青 +1 位作者 吴志伟 洪楚桐 《煤矿机械》 2025年第2期218-221,共4页
针对负载和转速变化引起的直流无刷电机控制精度不足导致机电调平系统效率低的问题,提出了一种基于模糊神经网络的直流无刷电机转速控制算法,克服了传统PID控制算法超调量大、精度低、调节时间长的缺点,从而提高机电调平系统的调平效率... 针对负载和转速变化引起的直流无刷电机控制精度不足导致机电调平系统效率低的问题,提出了一种基于模糊神经网络的直流无刷电机转速控制算法,克服了传统PID控制算法超调量大、精度低、调节时间长的缺点,从而提高机电调平系统的调平效率。在Simulink中搭建直流无刷电机模糊神经网络控制系统仿真模型,仿真结果表明:模糊神经网络相比于传统PID和模糊PID,控制系统超调量分别降低14.6%和10.2%,稳定时间分别缩短0.013 s和0.01 s,具有更好的动态特性和抗干扰性,电机控制精度得到很大提高,能有效提高机电调平系统的调平效率。 展开更多
关键词 直流无刷电机 机电调平 模糊神经网络 转速控制
原文传递
基于改进GA-BP神经网络的双感应电机控制同步
17
作者 王菁菁 吴嘉轩 潘成 《组合机床与自动化加工技术》 北大核心 2025年第7期95-100,105,共7页
针对矿料筛分中使用的同频振动筛,当振动机体的运动轨迹接近于椭圆时筛分效率最优异,这就要求两台感应电机实现同频零相位差控制同步,所以对双感应电机控制同步进行了研究。通过引入遗传算法(genetic algorithm,GA)来优化BP神经网络初... 针对矿料筛分中使用的同频振动筛,当振动机体的运动轨迹接近于椭圆时筛分效率最优异,这就要求两台感应电机实现同频零相位差控制同步,所以对双感应电机控制同步进行了研究。通过引入遗传算法(genetic algorithm,GA)来优化BP神经网络初始连接权值和阈值的选择,增加惯性因子改进输出层和隐含层中的连接权重加速BP神经网络收敛,从而设计出了相位控制器。最后从仿真结果可以看出,在振动自同步中,电机1和电机2之间的零相位差无法实现,而采用基于改进GA-BP神经网络pid控制方法,在控制同步中可以实现上述结果。对比控制方法,设计的GA-BP pid控制方法明显优于其他方法,为工业生产中同频振动筛的应用提供了新的思路和参考。 展开更多
关键词 振动筛 感应电机 控制同步 改进GA-BP神经网络 零相位差
在线阅读 下载PDF
基于CBAM-1DMSCNN的感应电机定子匝间短路故障诊断
18
作者 陈新岗 阳鑫 +3 位作者 马志鹏 李松 张知先 邹政廷 《电气工程学报》 北大核心 2025年第6期205-213,共9页
针对三相感应电机定子早期匝间短路故障难以有效检测的问题,提出了一种基于卷积注意力机制(Convolutional block attention module,CBAM)的一维多尺度卷积神经网络(One-dimension multi-scale convolutional neural network,1DMSCNN)的... 针对三相感应电机定子早期匝间短路故障难以有效检测的问题,提出了一种基于卷积注意力机制(Convolutional block attention module,CBAM)的一维多尺度卷积神经网络(One-dimension multi-scale convolutional neural network,1DMSCNN)的故障诊断方法。首先,以感应电机三相电流为研究对象进行感应电机匝间短路故障诊断研究,通过ANSYS建立二维感应电机匝间短路模型,分析不同转速不同故障程度下电流变化特性并将其代入CBAM-1DMSCNN模型中,精确地实现了定子匝间短路故障诊断;其次,搭建了匝间短路故障试验台,试验模拟了不同转速不同故障程度工况,验证了CBAM-1DMSCNN模型对匝间短路故障诊断的有效性,故障诊断准确率达到了99.4%。最后,对比传统匝间短路故障诊断模型,该模型的特征提取能力以及故障诊断准确率极大提高。 展开更多
关键词 感应电机 匝间短路 多尺度卷积神经网络 注意力机制 故障诊断
在线阅读 下载PDF
基于LSTM的永磁同步电机转速观测及控制优化
19
作者 唐旭 李永枭 +1 位作者 朱文杰 孙荣荣 《科学技术与工程》 北大核心 2025年第26期11185-11192,共8页
为实现永磁同步电机(permanent magnet synchronous motor,PMSM)的无传感器控制,提出了一种基于误差修正的长短时记忆神经网络(long short-term memory,LSTM)转速观测模型。该模型结合了LSTM神经网络与电机数学模型,将电机转速的实际值... 为实现永磁同步电机(permanent magnet synchronous motor,PMSM)的无传感器控制,提出了一种基于误差修正的长短时记忆神经网络(long short-term memory,LSTM)转速观测模型。该模型结合了LSTM神经网络与电机数学模型,将电机转速的实际值与数学模型计算值之间的差值(即数学模型计算的误差)作为神经网络的输出量进行训练,实现了电机转速的实时观测。将该观测模型应用于PMSM矢量控制系统,对电机负载转矩和给定转速突变等不同运行工况下进行了仿真分析,并与直接将电机转速作为输出量训练的神经网络观测模型进行了比较。结果表明,基于转速误差训练的神经网络训练负担更小,转速观测更准确。此外,结合电机系统特性改进神经网络模型,进一步优化转速观测的精度。仿真验证表明,改进后模型的转速观测误差更小,转速观测精度达99.084%,电机系统运行稳定,验证了该方法的有效性与优越性。 展开更多
关键词 永磁同步电机 转速观测器 矢量控制 LSTM神经网络 有限元分析
在线阅读 下载PDF
悬臂式煤矿掘进机变频电机自调速控制方法研究
20
作者 王杰平 《凿岩机械气动工具》 2025年第4期20-22,共3页
为了降低电机能耗,提升设备整体效益,文章提出一种基于神经网络的悬臂式煤矿掘进机变频电机自调速控制方法。首先,阐述了掘进机变频电机的结构与工作原理;其次,基于神经网络设计了自调速控制方法,并利用大量样本训练网络;最后,以EBZ160... 为了降低电机能耗,提升设备整体效益,文章提出一种基于神经网络的悬臂式煤矿掘进机变频电机自调速控制方法。首先,阐述了掘进机变频电机的结构与工作原理;其次,基于神经网络设计了自调速控制方法,并利用大量样本训练网络;最后,以EBZ160型掘进机变频电机为实验对象进行结果分析。实验结果表明,该自调速控制方法在空载时效能略优,在负载时节能效果显著,在电机能耗控制方面表现出卓越优势,值得业内推广。 展开更多
关键词 掘进机 变频电机 调速控制 神经网络
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部