BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is ca...BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.展开更多
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio...This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics.展开更多
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu...Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.展开更多
The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting t...The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting the relative permittivity of particle/polymer nanocomposites from the microstructure is of great significance.However,the classical effective medium theory and physics-based numerical calculation represented by finite element method are time-consuming and cumbersome for complex structures and nonlinear problem.The work explores a novel architecture combining the convolutional neural network(ConvNet)and finite element method(FEM)to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite(BT)particles in polyvinylidene fluoride(PVDF)matrix.The ConvNet was trained and evaluated on big datasets with 14266 training data and 3514 testing data generated form a programmatic algorithm.Through numerical experiments,we demonstrate that the trained network can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics R2,which reaches as high as 0.9783 and 0.9375 on training and testing data,respectively.The strong universality of the presented method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.展开更多
In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural netw...In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural network(ANN)a d two-dimensional shallow water equations based on hydrodynamic theory.Multi-factors included the rainfall intensity,pavement width,cross slope,longitudinal slope a d pavement roughness coefficient.The two-dimensional hydrodynamic method was validated by a natural rainfall event.Based on the design scheme o f Shen-Sha expressway engineering project,the limited training data obtained by the two-dimensional hydrodynamic simulation model was used to predict water film thickness.Furthermore,the distribution of the water film thickness influenced by multi-factors on the pavement was analyzed.The accuracy o f the ANN model was verified by the18sets o f data with a precision o f0.991.The simulation results indicate that the water film thickness increases from the median strip to the edge o f the pavement.The water film thickness variation is obviously influenced by rainfall intensity.Under the condition that the pavement width is20m and t e rainfall intensity is3m m/h,t e water film thickness is below10mm in the fast lane and20mm in t e lateral lane.Athough there is fluctuation due to the amount oftraining data,compared with the calculation on the basis o f the existing criterion and theory,t e ANN model exhibits a better performance for depicting the macroscopic distribution of the asphalt pavement water film.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting ...In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.展开更多
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to pred...In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to predict the continuous B-cell epitopes, and finally the predictive model for the B-cells epitopes was established. Comparing with the other predictive models, the prediction performance of this model is more excellent (AUC = 0.723). For the purpose of verifying the performance of the model, the prediction to the SWISS PROT NUMBER: P08677 was carried on, and the satisfying results were obtained.展开更多
This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three ...This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.展开更多
Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless fr...Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless framework for combining the measured data with the deep neural network,making the neural network capable of executing certain physical constraints.Unlike the data-driven model to learn the end-to-end mapping between the sensor data and high-dimensional flow field,PINN need no prior high-dimensional field as the training dataset and can construct the mapping from sensor data to high dimensional flow field directly.However,the extrapolation of the flow field in the temporal direction is limited due to the lack of training data.Therefore,we apply the long short-term memory(LSTM)network and physics-informed neural network(PINN)to predict the flow field and hydrodynamic force in the future temporal domain with limited data measured in the spatial domain.The physical constraints(conservation laws of fluid flow,e.g.,Navier-Stokes equations)are embedded into the loss function to enforce the trained neural network to capture some latent physical relation between the output fluid parameters and input tempo-spatial parameters.The sparsely measured points in this work are obtained from computational fluid dynamics(CFD)solver based on the local radial basis function(RBF)method.Different numbers of spatial measured points(4–35)downstream the cylinder are trained with/without the prior knowledge of Reynolds number to validate the availability and accuracy of the proposed approach.More practical applications of flow field prediction can compute the drag and lift force along with the cylinder,while different geometry shapes are taken into account.By comparing the flow field reconstruction and force prediction with CFD results,the proposed approach produces a comparable level of accuracy while significantly fewer data in the spatial domain is needed.The numerical results demonstrate that the proposed approach with a specific deep neural network configuration is of great potential for emerging cases where the measured data are often limited.展开更多
The thermal issue is of great importance during the layout design of heat source components in systems engineering,especially for high functional-density products.Thermal analysis requires complex simulation,which lea...The thermal issue is of great importance during the layout design of heat source components in systems engineering,especially for high functional-density products.Thermal analysis requires complex simulation,which leads to an unaffordable computational burden to layout optimization as it iteratively evaluates different schemes.Surrogate modeling is an effective method for alleviating computation complexity.However,the temperature field prediction(TFP)with complex heat source layout(HSL)input is an ultra-high dimensional nonlinear regression problem,which brings great difficulty to traditional regression models.The deep neural network(DNN)regression method is a feasible way for its good approximation performance.However,it faces great challenges in data preparation for sample diversity and uniformity in the layout space with physical constraints and proper DNN model selection and training for good generality,which necessitates the efforts of layout designers and DNN experts.To advance this cross-domain research,this paper proposes a DNN-based HSL-TFP surrogate modeling task benchmark.With consideration for engineering applicability,sample generation,dataset evaluation,DNN model,and surrogate performance metrics are thoroughly investigated.Experiments are conducted with ten representative state-of-the-art DNN models.A detailed discussion on baseline results is provided,and future prospects are analyzed for DNN-based HSL-TFP tasks.展开更多
Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neur...Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neural networks(DNN)have been used for prediction;however,they have not been applied to groundwater prediction in Indonesian peatlands.Tropical peatland is characterized by high permeability and forest plantations are surrounded by several canals.By predicting daily differences in GWL,the GWL can be predicted with high accuracy.DNNs,random forests,support vector regression,and XGBoost were compared,all of which indicated similar errors.The SHAP value revealed that the precipitation falling on the hill rapidly seeps into the soil and flows into the canals,which agrees with the fact that the soil has high permeability.These findings can potentially be used to alleviate and manage future fires in peatlands.展开更多
Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables...Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone.展开更多
Protein structure prediction is one of the most important problems in structural biology, β-turns are always at the turn of a protein tertiary structure and thus β-turn's prediction is a key step in tertiary struct...Protein structure prediction is one of the most important problems in structural biology, β-turns are always at the turn of a protein tertiary structure and thus β-turn's prediction is a key step in tertiary structure prediction. There are some methods to predict β-turns based on machine learning techniques such as k-nearest method, neural networks and support vector machine. In this paper, we construct a classifier using double BP networks and put forward two novel methods to code amino acids in the second network. When trained and tested on different datasets, they achieve more accuracy than other coding methods.展开更多
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil...The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.展开更多
Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e....Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.展开更多
A two-stage hybrid method is proposed to predict the phosphorus content of molten steel at the endpoint of steelmaking in BOF(Basic Oxygen Furnace). At the first clustering stage, the weighted K-means is performed to ...A two-stage hybrid method is proposed to predict the phosphorus content of molten steel at the endpoint of steelmaking in BOF(Basic Oxygen Furnace). At the first clustering stage, the weighted K-means is performed to produce clusters with homogeneous data. At the second predicting stage, each fuzzy neural network is carried out on each cluster and the results from all fuzzy neural networks are combined to be the final result of the hybrid method. The hybrid method and single fuzzy neural network are compared and the results show that the hybrid method outperforms single fuzzy neural network.展开更多
It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the sol...It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.展开更多
文摘BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.
基金Supported by the National Natural Science Foundation of China(No.62304022)。
文摘This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics.
文摘Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.
基金supported by the National Natural Science Foundation of China(Nos.52107018 and 51937007)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting the relative permittivity of particle/polymer nanocomposites from the microstructure is of great significance.However,the classical effective medium theory and physics-based numerical calculation represented by finite element method are time-consuming and cumbersome for complex structures and nonlinear problem.The work explores a novel architecture combining the convolutional neural network(ConvNet)and finite element method(FEM)to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite(BT)particles in polyvinylidene fluoride(PVDF)matrix.The ConvNet was trained and evaluated on big datasets with 14266 training data and 3514 testing data generated form a programmatic algorithm.Through numerical experiments,we demonstrate that the trained network can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics R2,which reaches as high as 0.9783 and 0.9375 on training and testing data,respectively.The strong universality of the presented method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.
基金The National Natural Science Foundation of China(No.51478114,51778136)the Transportation Science and Technology Program of Liaoning Province(No.201532)
文摘In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural network(ANN)a d two-dimensional shallow water equations based on hydrodynamic theory.Multi-factors included the rainfall intensity,pavement width,cross slope,longitudinal slope a d pavement roughness coefficient.The two-dimensional hydrodynamic method was validated by a natural rainfall event.Based on the design scheme o f Shen-Sha expressway engineering project,the limited training data obtained by the two-dimensional hydrodynamic simulation model was used to predict water film thickness.Furthermore,the distribution of the water film thickness influenced by multi-factors on the pavement was analyzed.The accuracy o f the ANN model was verified by the18sets o f data with a precision o f0.991.The simulation results indicate that the water film thickness increases from the median strip to the edge o f the pavement.The water film thickness variation is obviously influenced by rainfall intensity.Under the condition that the pavement width is20m and t e rainfall intensity is3m m/h,t e water film thickness is below10mm in the fast lane and20mm in t e lateral lane.Athough there is fluctuation due to the amount oftraining data,compared with the calculation on the basis o f the existing criterion and theory,t e ANN model exhibits a better performance for depicting the macroscopic distribution of the asphalt pavement water film.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
文摘In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to predict the continuous B-cell epitopes, and finally the predictive model for the B-cells epitopes was established. Comparing with the other predictive models, the prediction performance of this model is more excellent (AUC = 0.723). For the purpose of verifying the performance of the model, the prediction to the SWISS PROT NUMBER: P08677 was carried on, and the satisfying results were obtained.
文摘This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52206053,52130603)。
文摘Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless framework for combining the measured data with the deep neural network,making the neural network capable of executing certain physical constraints.Unlike the data-driven model to learn the end-to-end mapping between the sensor data and high-dimensional flow field,PINN need no prior high-dimensional field as the training dataset and can construct the mapping from sensor data to high dimensional flow field directly.However,the extrapolation of the flow field in the temporal direction is limited due to the lack of training data.Therefore,we apply the long short-term memory(LSTM)network and physics-informed neural network(PINN)to predict the flow field and hydrodynamic force in the future temporal domain with limited data measured in the spatial domain.The physical constraints(conservation laws of fluid flow,e.g.,Navier-Stokes equations)are embedded into the loss function to enforce the trained neural network to capture some latent physical relation between the output fluid parameters and input tempo-spatial parameters.The sparsely measured points in this work are obtained from computational fluid dynamics(CFD)solver based on the local radial basis function(RBF)method.Different numbers of spatial measured points(4–35)downstream the cylinder are trained with/without the prior knowledge of Reynolds number to validate the availability and accuracy of the proposed approach.More practical applications of flow field prediction can compute the drag and lift force along with the cylinder,while different geometry shapes are taken into account.By comparing the flow field reconstruction and force prediction with CFD results,the proposed approach produces a comparable level of accuracy while significantly fewer data in the spatial domain is needed.The numerical results demonstrate that the proposed approach with a specific deep neural network configuration is of great potential for emerging cases where the measured data are often limited.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11725211,52005505,and 62001502)Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200023).
文摘The thermal issue is of great importance during the layout design of heat source components in systems engineering,especially for high functional-density products.Thermal analysis requires complex simulation,which leads to an unaffordable computational burden to layout optimization as it iteratively evaluates different schemes.Surrogate modeling is an effective method for alleviating computation complexity.However,the temperature field prediction(TFP)with complex heat source layout(HSL)input is an ultra-high dimensional nonlinear regression problem,which brings great difficulty to traditional regression models.The deep neural network(DNN)regression method is a feasible way for its good approximation performance.However,it faces great challenges in data preparation for sample diversity and uniformity in the layout space with physical constraints and proper DNN model selection and training for good generality,which necessitates the efforts of layout designers and DNN experts.To advance this cross-domain research,this paper proposes a DNN-based HSL-TFP surrogate modeling task benchmark.With consideration for engineering applicability,sample generation,dataset evaluation,DNN model,and surrogate performance metrics are thoroughly investigated.Experiments are conducted with ten representative state-of-the-art DNN models.A detailed discussion on baseline results is provided,and future prospects are analyzed for DNN-based HSL-TFP tasks.
基金supported by JSPS KAKENHI Grant Number JP21K14064 and JP23K13239.
文摘Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neural networks(DNN)have been used for prediction;however,they have not been applied to groundwater prediction in Indonesian peatlands.Tropical peatland is characterized by high permeability and forest plantations are surrounded by several canals.By predicting daily differences in GWL,the GWL can be predicted with high accuracy.DNNs,random forests,support vector regression,and XGBoost were compared,all of which indicated similar errors.The SHAP value revealed that the precipitation falling on the hill rapidly seeps into the soil and flows into the canals,which agrees with the fact that the soil has high permeability.These findings can potentially be used to alleviate and manage future fires in peatlands.
基金supported by the National Natural Science Foundation of China(No.42061065)the Third Xinjiang Comprehensive Scientific Expedition,China(No.2022xjkk03010102).
文摘Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone.
基金Supported by the National Natural Science Foundation of China (60773010)
文摘Protein structure prediction is one of the most important problems in structural biology, β-turns are always at the turn of a protein tertiary structure and thus β-turn's prediction is a key step in tertiary structure prediction. There are some methods to predict β-turns based on machine learning techniques such as k-nearest method, neural networks and support vector machine. In this paper, we construct a classifier using double BP networks and put forward two novel methods to code amino acids in the second network. When trained and tested on different datasets, they achieve more accuracy than other coding methods.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
基金Project(51878078)supported by the National Natural Science Foundation of ChinaProject(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC-2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,China。
文摘The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.
基金The authors appreciate the financial support provided by the Natural Science Foundation of China(No.41807294)This study was also financially supported by China Geological Survey Project(Nos.DD20190716 and 0001212020CC60002)。
文摘Landslide displacement prediction can enhance the efficacy of landslide monitoring system,and the prediction of the periodic displacement is particularly challenging.In the previous studies,static regression models(e.g.,support vector machine(SVM))were mostly used for predicting the periodic displacement.These models may have bad performances,when the dynamic features of landslide triggers are incorporated.This paper proposes a method for predicting the landslide displacement in a dynamic manner,based on the gated recurrent unit(GRU)neural network and complete ensemble empirical decomposition with adaptive noise(CEEMDAN).The CEEMDAN is used to decompose the training data,and the GRU is subsequently used for predicting the periodic displacement.Implementation procedures of the proposed method were illustrated by a case study in the Caojiatuo landslide area,and SVM was also adopted for the periodic displacement prediction.This case study shows that the predictors obtained by SVM are inaccurate,as the landslide displacement is in a pronouncedly step-wise manner.By contrast,the accuracy can be significantly improved using the dynamic predictive method.This paper reveals the significance of capturing the dynamic features of the inputs in the training process,when the machine learning models are adopted to predict the landslide displacement.
基金Item Sponsored by Beijing Higher Education Young Elite Teacher Project(YETP0382)2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science of China(Z121101002812005)
文摘A two-stage hybrid method is proposed to predict the phosphorus content of molten steel at the endpoint of steelmaking in BOF(Basic Oxygen Furnace). At the first clustering stage, the weighted K-means is performed to produce clusters with homogeneous data. At the second predicting stage, each fuzzy neural network is carried out on each cluster and the results from all fuzzy neural networks are combined to be the final result of the hybrid method. The hybrid method and single fuzzy neural network are compared and the results show that the hybrid method outperforms single fuzzy neural network.
基金supported by the National Natural Science Foundation of China under Grant numbers U2031202,U1731124 and U1531247the special foundation work of the Ministry of Science and Technology of the People’s Republic of China under Grant number 2014FY120300the 13th Five-year Informatization Plan of Chinese Academy of Sciences under Grant number XXH13505-04。
文摘It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.