期刊文献+
共找到10,447篇文章
< 1 2 250 >
每页显示 20 50 100
A Hybrid Neural Network for Spatiotemporal Pattern Recognition
1
作者 曹元大 陈一峰 《Journal of Beijing Institute of Technology》 EI CAS 1996年第1期1-6,共6页
A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen... A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals. 展开更多
关键词 neural networks pattern recognition spatio-temporal pattern
在线阅读 下载PDF
Identification and distribution patterns of the ultra-deep small-scale strike-slip faults based on convolutional neural network in Tarim Basin,NW China 被引量:1
2
作者 Hao Li Jun Han +4 位作者 Cheng Huang Lian-Bo Zeng Bo Lin Ying-Tao Yao Yi-Chen Song 《Petroleum Science》 2025年第8期3152-3167,共16页
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco... The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents. 展开更多
关键词 Small-scale strike-slip faults Convolutional neural network Fault label Isolated fracture-vug system Distribution patterns
原文传递
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
3
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Smelting stage recognition for converter steelmaking based on the convolutional recurrent neural network
4
作者 Zhangjie Dai Ye Sun +2 位作者 Wei Liu Shufeng Yang Jingshe Li 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2152-2163,共12页
The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stag... The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stage.Effectively identifying and predicting the smelt-ing stage poses a significant challenge within industrial production.Traditional image-based methodologies,which rely on a single static flame image as input,demonstrate low recognition accuracy and inadequately extract the dynamic changes in smelting stage.To address this issue,the present study introduces an innovative recognition model that preprocesses flame video sequences from the furnace mouth and then employs a convolutional recurrent neural network(CRNN)to extract spatiotemporal features and derive recognition outputs.Ad-ditionally,we adopt feature layer visualization techniques to verify the model’s effectiveness and further enhance model performance by integrating the Bayesian optimization algorithm.The results indicate that the ResNet18 with convolutional block attention module(CBAM)in the convolutional layer demonstrates superior image feature extraction capabilities,achieving an accuracy of 90.70%and an area under the curve of 98.05%.The constructed Bayesian optimization-CRNN(BO-CRNN)model exhibits a significant improvement in comprehensive performance,with an accuracy of 97.01%and an area under the curve of 99.85%.Furthermore,statistics on the model’s average recognition time,computational complexity,and parameter quantity(Average recognition time:5.49 ms,floating-point opera-tions per second:18260.21 M(1 M=1×10^(6)),parameters:11.58 M)demonstrate superior performance.Through extensive repeated ex-periments on real-world datasets,the proposed CRNN model is capable of rapidly and accurately identifying smelting stages,offering a novel approach for converter smelting endpoint control. 展开更多
关键词 intelligent steelmaking flame state recognition deep learning convolutional recurrent neural network
在线阅读 下载PDF
Recognition and Classification of Concrete Surface Cracks with an Inception Quantum Convolutional Neural Network Algorithm
5
作者 Bu Yun-zhe Xiao Yi-lei +1 位作者 Li Ya-jun Meng Ling-guang 《Applied Geophysics》 2025年第4期1475-1490,1502,共17页
Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concre... Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concrete crack detection method that integrates the Inception module and a quantum convolutional neural network.First,the features of concrete cracks are highlighted by image gray processing,morphological operations,and threshold segmentation,and then the image is quantum coded by angle coding to transform the classical image information into quantum image information.Then,quantum circuits are used to implement classical image convolution operations to improve the convergence speed of the model and enhance the image representation.Second,two image input paths are designed:one with a quantum convolutional layer and the other with a classical convolutional layer.Finally,comparative experiments are conducted using different parameters to determine the optimal concrete crack classification parameter values for concrete crack image classification.Experimental results show that the method is suitable for crack classification in different scenarios,and training speed is greatly improved compared with that of existing deep learning models.The two evaluation metrics,accuracy and recall,are considerably enhanced. 展开更多
关键词 Concrete crack Quantum computing Image recognition and classification Quantum convolutional neural network
在线阅读 下载PDF
Application of extension neural network to safety status pattern recognition of coalmines 被引量:6
6
作者 周玉 W.Pedrycz 钱旭 《Journal of Central South University》 SCIE EI CAS 2011年第3期633-641,共9页
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of... In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production. 展开更多
关键词 safety status pattern recognition extension neural network coal mines
在线阅读 下载PDF
Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 被引量:2
7
作者 Amani Tahat Jordi Marti +1 位作者 Ali Khwaldeh Kaher Tahat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期410-421,共12页
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu... In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. 展开更多
关键词 pattern recognition proton transfer chart pattern data mining artificial neural network empiricalvalence bond
原文传递
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network 被引量:2
8
作者 Yuhong Jin Lei Hou +1 位作者 Zhenyong Lu Yushu Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期180-197,共18页
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause... The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown. 展开更多
关键词 Hollow shaft rotor Breathing crack Radial basis function network pattern recognition neural network Machine learning
在线阅读 下载PDF
Pattern recognition and prediction study of rock burst based on neural network 被引量:2
9
作者 LI Hong 《Journal of Coal Science & Engineering(China)》 2010年第4期347-351,共5页
Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though th... Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though the critical value method gets extensiveapplication in practice, it stresses only on the superficial change of data and overlooks alot of features of rock burst and useful information that is concealed and hidden in the observationtime series.Pattern recognition extracts the feature value of time domain, frequencydomain and wavelet domain in observation time series to form Multi-Feature vectors,using Euclidean distance measure as the separable criterion between the same typeand different type to compress and transform feature vectors.It applies neural network asa tool to recognize the danger of rock burst, and uses feature vectors being compressedto carry out training and studying.It is proved by test samples that predicting precisionshould be prior to such traditional predicting methods as pattern recognition and critical indicatormethod. 展开更多
关键词 rock burst multi-feature pattern recognition neural network
在线阅读 下载PDF
A Fuzzy Neural Network for Fault Pattern Recognition 被引量:1
10
作者 PAN Zi wei, WU Chao ying Department of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, P.R.China 《International Journal of Plant Engineering and Management》 2001年第3期143-148,共6页
This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicat... This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns. 展开更多
关键词 neural network fuzzy set theory pattern recognition balling element bearing
在线阅读 下载PDF
Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network
11
作者 常文利 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期195-199,共5页
We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of infor... We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function. 展开更多
关键词 scale-free neural network pattern recognition blurred ways
在线阅读 下载PDF
2D spiral pattern recognition based on neural network covering algorithm
12
作者 黄国宏 熊志化 邵惠鹤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期330-333,共4页
The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal ch... The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set). 展开更多
关键词 pattern recognition neural networks max-density covering learning 2D spiral data
在线阅读 下载PDF
MOVING TARGETS PATTERN RECOGNITION BASED ON THE WAVELET NEURAL NETWORK
13
作者 GeGuangying ChenLili XuJianjian 《Journal of Electronics(China)》 2005年第3期321-328,共8页
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar... Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively. 展开更多
关键词 Moving targets detection pattern recognition Wavelet neural network Targets classification
在线阅读 下载PDF
Multimodal emotion recognition based on deep neural network 被引量:2
14
作者 Ye Jiayin Zheng Wenming +2 位作者 Li Yang Cai Youyi Cui Zhen 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期444-447,共4页
In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.F... In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information. 展开更多
关键词 emotion recognition convolutional neural network ( CNN) recurrent neural networks ( RNN)
在线阅读 下载PDF
Expression Recognition Method Based on Convolutional Neural Network and Capsule Neural Network 被引量:1
15
作者 Zhanfeng Wang Lisha Yao 《Computers, Materials & Continua》 SCIE EI 2024年第4期1659-1677,共19页
Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, Caps... Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy. 展开更多
关键词 Expression recognition capsule neural network convolutional neural network
在线阅读 下载PDF
A CASCADED MODEL OF NEURAL NETWORK FOR PATTERN RECOGNITION
16
作者 张延忻 高成群 +2 位作者 黄五群 沈琴婉 陈天伦 《Journal of Electronics(China)》 1992年第4期367-375,共9页
A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern re... A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern recognitions of multiple 3-D targets with arbitrary spatialorientations. 展开更多
关键词 neural network pattern recognition Cascaded model Learning algorithm Optical IMPLEMENTATION
在线阅读 下载PDF
Prediction of Enthalpies of Fusion for Divalent Rare Earth Halides Based on Modeling by Artificial Neural Networks and Pattern Recognition
17
作者 Yimin Sun Zhiyu Qiao Minghong He(Applied Science School, University of Science & Technology Beijing, Beijing 100083, China)(National Natural Science Foundation of China, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第1期24-26,共3页
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ... The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data. 展开更多
关键词 BP neural network pattern recognition enthalpy of fusion divalent rare earth halides microstructural parameters
在线阅读 下载PDF
Study on separation identification of cement stabilized crushed stone mixture based on convolutional neural network
18
作者 Qingyi Xiao Miaomiao Zhu +2 位作者 Zhenchao Zhao Xinyu Zhao Fangyuan Gong 《Journal of Road Engineering》 2025年第3期353-377,共25页
With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigi... With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigid base layers,cement stabilized crushed stone mixture(hereinafter referred to as water stabilized mixture),often experiences segregation during mixing,transportation,and paving.Separation of water stabilized mixture can greatly reduce the service life of roads and cause damage to people's property,the traditional separation detection method that relies on manual experience has problems of low detection efficiency and low recognition accuracy.In order to solve these problems and assist in the modernization of road construction,this article proposes a separation recognition method for water stabilized mixtures based on deep learning.Firstly,a database of segregation diseases of water stabilized mixture was built.Secondly,the control tests were set up by standard fine-tuning and feature extraction,and four different optimizers were set up respectively.By comparing accuracy,loss,precision,recall and F1-score at the end of the pre-trained network,the overall recognition effect of ResNet-101 as the network model was better.Thirdly,the ResNet-101 model was optimized by SpotTune,replacing cross entropy loss with focus loss,adding PReLU to the pre-trained network and a BN layer to the top layer of the pre-trained network,and using 1×1.Convolutional replacement of the fully connected layer.Finally,build a web side water stabilized mixture segregation recognition platform,and its stability was verified in practical engineering. 展开更多
关键词 Cement-stabilized macadam SEGREGATION Convolutional neural network Image recognition
在线阅读 下载PDF
A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks 被引量:11
19
作者 Fengye Hu Lu Wang +2 位作者 Shanshan Wang Xiaolan Liu Gengxin He 《China Communications》 SCIE CSCD 2016年第8期198-208,共11页
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos... Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications. 展开更多
关键词 wireless body area networks BP neural network signal vector magnitude posture recognition rate
在线阅读 下载PDF
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
20
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation (BP) neural network chaos algorithm genetic algorithm data glove.
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部