A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequen...A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.展开更多
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco...The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stag...The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stage.Effectively identifying and predicting the smelt-ing stage poses a significant challenge within industrial production.Traditional image-based methodologies,which rely on a single static flame image as input,demonstrate low recognition accuracy and inadequately extract the dynamic changes in smelting stage.To address this issue,the present study introduces an innovative recognition model that preprocesses flame video sequences from the furnace mouth and then employs a convolutional recurrent neural network(CRNN)to extract spatiotemporal features and derive recognition outputs.Ad-ditionally,we adopt feature layer visualization techniques to verify the model’s effectiveness and further enhance model performance by integrating the Bayesian optimization algorithm.The results indicate that the ResNet18 with convolutional block attention module(CBAM)in the convolutional layer demonstrates superior image feature extraction capabilities,achieving an accuracy of 90.70%and an area under the curve of 98.05%.The constructed Bayesian optimization-CRNN(BO-CRNN)model exhibits a significant improvement in comprehensive performance,with an accuracy of 97.01%and an area under the curve of 99.85%.Furthermore,statistics on the model’s average recognition time,computational complexity,and parameter quantity(Average recognition time:5.49 ms,floating-point opera-tions per second:18260.21 M(1 M=1×10^(6)),parameters:11.58 M)demonstrate superior performance.Through extensive repeated ex-periments on real-world datasets,the proposed CRNN model is capable of rapidly and accurately identifying smelting stages,offering a novel approach for converter smelting endpoint control.展开更多
Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concre...Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concrete crack detection method that integrates the Inception module and a quantum convolutional neural network.First,the features of concrete cracks are highlighted by image gray processing,morphological operations,and threshold segmentation,and then the image is quantum coded by angle coding to transform the classical image information into quantum image information.Then,quantum circuits are used to implement classical image convolution operations to improve the convergence speed of the model and enhance the image representation.Second,two image input paths are designed:one with a quantum convolutional layer and the other with a classical convolutional layer.Finally,comparative experiments are conducted using different parameters to determine the optimal concrete crack classification parameter values for concrete crack image classification.Experimental results show that the method is suitable for crack classification in different scenarios,and training speed is greatly improved compared with that of existing deep learning models.The two evaluation metrics,accuracy and recall,are considerably enhanced.展开更多
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of...In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.展开更多
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu...In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.展开更多
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause...The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.展开更多
Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though th...Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though the critical value method gets extensiveapplication in practice, it stresses only on the superficial change of data and overlooks alot of features of rock burst and useful information that is concealed and hidden in the observationtime series.Pattern recognition extracts the feature value of time domain, frequencydomain and wavelet domain in observation time series to form Multi-Feature vectors,using Euclidean distance measure as the separable criterion between the same typeand different type to compress and transform feature vectors.It applies neural network asa tool to recognize the danger of rock burst, and uses feature vectors being compressedto carry out training and studying.It is proved by test samples that predicting precisionshould be prior to such traditional predicting methods as pattern recognition and critical indicatormethod.展开更多
This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicat...This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns.展开更多
We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of infor...We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.展开更多
The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal ch...The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set).展开更多
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar...Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.展开更多
In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.F...In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information.展开更多
Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, Caps...Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.展开更多
A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern re...A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern recognitions of multiple 3-D targets with arbitrary spatialorientations.展开更多
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ...The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.展开更多
With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigi...With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigid base layers,cement stabilized crushed stone mixture(hereinafter referred to as water stabilized mixture),often experiences segregation during mixing,transportation,and paving.Separation of water stabilized mixture can greatly reduce the service life of roads and cause damage to people's property,the traditional separation detection method that relies on manual experience has problems of low detection efficiency and low recognition accuracy.In order to solve these problems and assist in the modernization of road construction,this article proposes a separation recognition method for water stabilized mixtures based on deep learning.Firstly,a database of segregation diseases of water stabilized mixture was built.Secondly,the control tests were set up by standard fine-tuning and feature extraction,and four different optimizers were set up respectively.By comparing accuracy,loss,precision,recall and F1-score at the end of the pre-trained network,the overall recognition effect of ResNet-101 as the network model was better.Thirdly,the ResNet-101 model was optimized by SpotTune,replacing cross entropy loss with focus loss,adding PReLU to the pre-trained network and a BN layer to the top layer of the pre-trained network,and using 1×1.Convolutional replacement of the fully connected layer.Finally,build a web side water stabilized mixture segregation recognition platform,and its stability was verified in practical engineering.展开更多
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the...Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA.展开更多
文摘A hybrid network is presented for spatio-temporal feature detecting, which is called TS-LM-SOFM. Its top layer is a novel single layer temporal sequence recognizer called TS which can transform sparse temporal sequential pattern into abstract spatial feature representations. The bottom layer of TS-LM-SOFM, a modified self-organizing feature map, is used as a spatial feature detector. A learning matrix connects the two layers. Experiments show that the hybrid network can well capture the spatio-temporal features of input signals.
基金supported by the National Natural Science Foundation of China(No.U21B2062).
文摘The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
基金financially supported by the National Natural Science Foundation of China(No.52374320).
文摘The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stage.Effectively identifying and predicting the smelt-ing stage poses a significant challenge within industrial production.Traditional image-based methodologies,which rely on a single static flame image as input,demonstrate low recognition accuracy and inadequately extract the dynamic changes in smelting stage.To address this issue,the present study introduces an innovative recognition model that preprocesses flame video sequences from the furnace mouth and then employs a convolutional recurrent neural network(CRNN)to extract spatiotemporal features and derive recognition outputs.Ad-ditionally,we adopt feature layer visualization techniques to verify the model’s effectiveness and further enhance model performance by integrating the Bayesian optimization algorithm.The results indicate that the ResNet18 with convolutional block attention module(CBAM)in the convolutional layer demonstrates superior image feature extraction capabilities,achieving an accuracy of 90.70%and an area under the curve of 98.05%.The constructed Bayesian optimization-CRNN(BO-CRNN)model exhibits a significant improvement in comprehensive performance,with an accuracy of 97.01%and an area under the curve of 99.85%.Furthermore,statistics on the model’s average recognition time,computational complexity,and parameter quantity(Average recognition time:5.49 ms,floating-point opera-tions per second:18260.21 M(1 M=1×10^(6)),parameters:11.58 M)demonstrate superior performance.Through extensive repeated ex-periments on real-world datasets,the proposed CRNN model is capable of rapidly and accurately identifying smelting stages,offering a novel approach for converter smelting endpoint control.
基金supported by 2023 National College Students'Innovation and Entrepreneurship Training Program project"Building Crack Structure Safety Detection based on Quantum Convolutional Neural Network intelligent Algorithm-A case study of Sanzhuang Town,Donggang District,Rizhao City"(NO.202310429224).
文摘Current concrete surface crack detection methods cannot simultaneously achieve high detection accuracy and efficiency.Thus,this study focuses on the recognition and classification of crack images and proposes a concrete crack detection method that integrates the Inception module and a quantum convolutional neural network.First,the features of concrete cracks are highlighted by image gray processing,morphological operations,and threshold segmentation,and then the image is quantum coded by angle coding to transform the classical image information into quantum image information.Then,quantum circuits are used to implement classical image convolution operations to improve the convergence speed of the model and enhance the image representation.Second,two image input paths are designed:one with a quantum convolutional layer and the other with a classical convolutional layer.Finally,comparative experiments are conducted using different parameters to determine the optimal concrete crack classification parameter values for concrete crack image classification.Experimental results show that the method is suitable for crack classification in different scenarios,and training speed is greatly improved compared with that of existing deep learning models.The two evaluation metrics,accuracy and recall,are considerably enhanced.
基金Project(107021) supported by the Key Foundation of Chinese Ministry of Education Project(2009643013) supported by China Scholarship Fund
文摘In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production.
基金Dr. Steve Jones, Scientific Advisor of the Canon Foundation for Scientific Research (7200 The Quorum, Oxford Business Park, Oxford OX4 2JZ, England). Canon Foundation for Scientific Research funded the UPC 2013 tuition fees of the corresponding author during her writing this article
文摘In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.
基金Supported by National Natural Science Foundation of China (Grant No.11972129)National Science and Technology Major Project of China (Grant No.2017-IV-0008-0045)+1 种基金Heilongjiang Provincial Natural Science Foundation (Grant No.YQ2022A008)the Fundamental Research Funds for the Central Universities。
文摘The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.
文摘Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though the critical value method gets extensiveapplication in practice, it stresses only on the superficial change of data and overlooks alot of features of rock burst and useful information that is concealed and hidden in the observationtime series.Pattern recognition extracts the feature value of time domain, frequencydomain and wavelet domain in observation time series to form Multi-Feature vectors,using Euclidean distance measure as the separable criterion between the same typeand different type to compress and transform feature vectors.It applies neural network asa tool to recognize the danger of rock burst, and uses feature vectors being compressedto carry out training and studying.It is proved by test samples that predicting precisionshould be prior to such traditional predicting methods as pattern recognition and critical indicatormethod.
文摘This paper combines fuzzy set theory with ART neural net-work , and demonstrates some important properties of the fuzzy ART neural net-work algorithm. The results from application on a ball bearing diagnosis indicate that a fuzzy ART neural net-work has an effect of fast stable recognition for fuzzy patterns.
基金Supported by "Qing Lan" Talent Engineering Funds by Lanzhou Jiaotong University under Grant No. QL-08-18A
文摘We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
基金Sponsored by the National High Technology Research Development Program of China(Grant No.2001AA413130).
文摘The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set).
文摘Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.
文摘In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information.
基金the following funds:The Key Scientific Research Project of Anhui Provincial Research Preparation Plan in 2023(Nos.2023AH051806,2023AH052097,2023AH052103)Anhui Province Quality Engineering Project(Nos.2022sx099,2022cxtd097)+1 种基金University-Level Teaching and Research Key Projects(Nos.ch21jxyj01,XLZ-202208,XLZ-202106)Special Support Plan for Innovation and Entrepreneurship Leaders in Anhui Province。
文摘Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.
基金the National Natural Science Foundation of China.
文摘A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern recognitions of multiple 3-D targets with arbitrary spatialorientations.
文摘The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.
基金sponsored by the National Natural Science Foundation of China under grant No.52008154,to which the authors are very grateful.
文摘With the vigorous development of China's transportation industry,the mileage of high-grade highways based on semi rigid base layers has been increasing year by year.However,the commonly used material for semi rigid base layers,cement stabilized crushed stone mixture(hereinafter referred to as water stabilized mixture),often experiences segregation during mixing,transportation,and paving.Separation of water stabilized mixture can greatly reduce the service life of roads and cause damage to people's property,the traditional separation detection method that relies on manual experience has problems of low detection efficiency and low recognition accuracy.In order to solve these problems and assist in the modernization of road construction,this article proposes a separation recognition method for water stabilized mixtures based on deep learning.Firstly,a database of segregation diseases of water stabilized mixture was built.Secondly,the control tests were set up by standard fine-tuning and feature extraction,and four different optimizers were set up respectively.By comparing accuracy,loss,precision,recall and F1-score at the end of the pre-trained network,the overall recognition effect of ResNet-101 as the network model was better.Thirdly,the ResNet-101 model was optimized by SpotTune,replacing cross entropy loss with focus loss,adding PReLU to the pre-trained network and a BN layer to the top layer of the pre-trained network,and using 1×1.Convolutional replacement of the fully connected layer.Finally,build a web side water stabilized mixture segregation recognition platform,and its stability was verified in practical engineering.
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
基金supported by Natural Science Foundation of Heilongjiang Province Youth Fund(No.QC2014C054)Foundation for University Young Key Scholar by Heilongjiang Province(No.1254G023)the Science Funds for the Young Innovative Talents of HUST(No.201304)
文摘Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA.