期刊文献+
共找到274篇文章
< 1 2 14 >
每页显示 20 50 100
A Multi-Scale Graph Neural Network for the Prediction of Multi-Component Gas Adsorption
1
作者 Lujun Li Haibin Yu 《Engineering》 2025年第9期102-111,共10页
Metal–organic frameworks(MOFs)hold great potential for gas separation and storage,and graph neural networks have proven to be a powerful tool for exploring material structure–property relationships and discovering n... Metal–organic frameworks(MOFs)hold great potential for gas separation and storage,and graph neural networks have proven to be a powerful tool for exploring material structure–property relationships and discovering new materials.Unlike traditional molecular graphs,crystal graphs require consideration of periodic invariance and modes.In addition,MOF structures such as covalent bonds,functional groups,and global structures impact adsorption performance in different ways.However,redundant atomic interactions can disrupt training accuracy,potentially leading to overfitting.In this paper,we propose a multi-scale crystal graph for describing periodic crystal structures,modeling interatomic interactions at different scales while preserving periodicity invariance.We also propose a multi-head attention crystal graph network in multi-scale graphs(MHACGN-MS),which learns structural characteristics by focusing on interatomic interactions at different scales,thereby reducing interference from redundant interactions.Using MOF adsorption for gases as an example,we demonstrate that MHACGN-MS outperforms traditional graph neural networks in predicting multi-component gas adsorption.We also visualize attention scores to validate effective learning and demonstrate the model’s interpretability. 展开更多
关键词 Metal-organic frameworks Multi-head attention score Graph neural network Adsorption
在线阅读 下载PDF
Prediction of Subcellular Localization of Eukaryotic Proteins Using Position-Specific Profiles and Neural Network with Weighted Inputs 被引量:3
2
作者 邹凌云 王正志 黄教民 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第12期1080-1087,共8页
Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain... Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific lterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and lst-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy. 展开更多
关键词 subcellular localization PSI-BLAST position-specific scoring matrices weighting function BP neural network
在线阅读 下载PDF
神经镜像激活康复理念对脑卒中后肩手综合征患者的效果
3
作者 温瑞丽 古丽红 +2 位作者 梁万仟 梁洪铨 巫李雄 《中外医学研究》 2026年第2期95-98,102,共5页
目的:分析神经镜像激活康复理念对脑卒中后肩手综合征患者的效果。方法:选取2022年10月—2023年11月于广西壮族自治区荣誉军人康复医院就诊的80例SHSⅠ期患者为研究对象。根据简单随机化法将其分为经典组和分析组,每组各40例。经典组接... 目的:分析神经镜像激活康复理念对脑卒中后肩手综合征患者的效果。方法:选取2022年10月—2023年11月于广西壮族自治区荣誉军人康复医院就诊的80例SHSⅠ期患者为研究对象。根据简单随机化法将其分为经典组和分析组,每组各40例。经典组接受常规康复训练,分析组接受经镜像激活康复理念支持的康复训练。对最终汇总结果进行分析。结果:康复效应层级分布数据结果显示,分析组神经-运动整合康复水平较经典组佳,差异有统计学意义(P<0.05)。对神经源性疼痛指数变化情况研究,分析组干预后视觉模拟评分法(VAS)评分较经典组低,差异有统计学意义(P<0.05)。分析组多模态舒适感知在环境、生理、社会及心理方面的神经可塑性诱导智能康复后多模态舒适情况高于经典组,差异有统计学意义(P<0.05)。结论:针对肩手综合征患者,引入神经镜像激活康复理念支持利于其神经-运动康复水平改善,并降低其疼痛评分,提升其在多维度的舒适感知。 展开更多
关键词 神经功能 肩手功能 运动康复水平 疼痛评分 舒适感知 神经镜像
暂未订购
三种微创治疗方式对带状疱疹后神经痛患者的改善效果
4
作者 张林 周星余 +1 位作者 刘勇 李莉 《局解手术学杂志》 2026年第1期42-46,共5页
目的 探讨神经阻滞(NB)、脉冲射频(PRF)和短时程脊髓电刺激(st-SCS)三种微创治疗方式对带状疱疹后神经痛(PHN)患者治疗效果的影响。方法 分析2021年12月至2023年12月我院收治的204例PHN患者的资料,通过倾向性评分匹配均衡组间基线差异... 目的 探讨神经阻滞(NB)、脉冲射频(PRF)和短时程脊髓电刺激(st-SCS)三种微创治疗方式对带状疱疹后神经痛(PHN)患者治疗效果的影响。方法 分析2021年12月至2023年12月我院收治的204例PHN患者的资料,通过倾向性评分匹配均衡组间基线差异。根据治疗方式不同将患者分为NB组(n=67)、PRF组(n=14)、st-SCS组(n=47),比较各组一般资料。统计入院时、出院时、出院后4周各组患者疼痛数字评分法(NRS)评分及汉密尔顿抑郁评分(HAMD);采用潜在类别增长模型分析疼痛轨迹。结果 各治疗组患者的住院时间和抗抑郁药物服用情况存在统计学差异(P<0.05)。其中,st-SCS组患者的住院时间最长,服用抗抑郁药物的占比最高。各治疗组患者不同时间点间NRS评分比较,差异均无统计学意义(P>0.05);各治疗组患者疼痛轨迹分布差异无统计学意义(P>0.05)。各治疗组间不同时间点抑郁评分比较,差异均无统计学意义(P>0.05)。结论 NB、PRF、st-SCS三种微创治疗方式短期内对疼痛的缓解效果相当,但NB经济性更优,推荐作为初始治疗;st-SCS的住院时间相对较长,但适用于复杂且疼痛剧烈的患者。 展开更多
关键词 带状疱疹后神经痛 微创治疗 倾向性评分匹配 神经阻滞 脉冲射频 短时程脊髓电刺激
暂未订购
Predictors of short-term outcome in patients with acute middle cerebral artery occlusion: unsuitability of fluid-attenuated inversion recovery vascular hyperintensity scores 被引量:14
5
作者 Chan-chan Li Xiao-zhu Hao +3 位作者 Jia-qi Tian Zhen-wei Yao Xiao-yuan Feng Yan-mei Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期69-76,共8页
Fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH) is used to assess leptomeningeal collateral circulation, but clinical outcomes of patients with FVH can be very different. The aim of the p... Fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH) is used to assess leptomeningeal collateral circulation, but clinical outcomes of patients with FVH can be very different. The aim of the present study was to assess a FVH score and explore its relationship with clinical outcomes. Patients with acute ischemic stroke due to middle cerebral artery M1 occlusion underwent magnetic resonance imaging and were followed up at 10 days (National Institutes of Health Stroke Scale) and 90 days (modified Rankin Scale) to determine short-term clinical outcomes. Effective collateral circulation indirectly improved recovery of neurological function and short-term clinical outcome by extending the size of the pial penumbra and reducing infarct lesions. FVH score showed no correlation with 90-day functional clinical outcome and was not sufficient as an independent predictor of short-term clinical outcome. 展开更多
关键词 nerve regeneration National Institutes of Health Stroke Scale middle cerebral artery occlusion collateral circulation modified Rankin Scale score cerebral ischemia acute stroke diffusion-weighted imaging fluid-attenuated inversion recovery neural regeneration
暂未订购
Dynamic correlation of diffusion tensor imaging and neurological function scores in beagles with spinal cord injury 被引量:6
6
作者 Chang-Bin Liu De-Gang Yang +12 位作者 Qian-Ru Meng Da-Peng Li Ming-Liang Yang Wei Sun Wen-Hao Zhang Chang Cai Liang-Jie Du Jun Li Feng Gao Yan Yu Xin Zhang Zhen-Tao Zuo Jian-Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期877-886,共10页
Exploring the relationship between different structure of the spinal cord and functional assessment after spinal cord injury is important. Quantitative diffusion tensor imaging can provide information about the micros... Exploring the relationship between different structure of the spinal cord and functional assessment after spinal cord injury is important. Quantitative diffusion tensor imaging can provide information about the microstructure of nerve tissue and can quantify the pathological damage of spinal cord white matter and gray matter. In this study, a custom-designed spinal cord contusion-impactor was used to damage the T_(10) spinal cord of beagles. Diffusion tensor imaging was used to observe changes in the whole spinal cord, white matter, and gray matter, and the Texas Spinal Cord Injury Score was used to assess changes in neurological function at 3 hours, 24 hours, 6 weeks, and 12 weeks after injury. With time, fractional anisotropy values after spinal cord injury showed a downward trend, and the apparent diffusion coefficient, mean diffusivity, and radial diffusivity first decreased and then increased. The apparent diffusion-coefficient value was highly associated with the Texas Spinal Cord Injury Score for the whole spinal cord(R = 0.919, P = 0.027), white matter(R = 0.932, P = 0.021), and gray matter(R = 0.882, P = 0.048). Additionally, the other parameters had almost no correlation with the score(P 〉 0.05). In conclusion, the highest and most significant correlation between diffusion parameters and neurological function was the apparent diffusion-coefficient value for white matter, indicating that it could be used to predict the recovery of neurological function accurately after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury diffusion tensor imaging fractional anisotropy apparent diffusion coefficient white matter gray matter Texas Spinal Cord Injury score beagles neural regeneration
暂未订购
Influence of acupuncture on neural movement function in rats with middle cerebral artery occlusion-A randomized controlled trial 被引量:3
7
作者 常晓波 樊小农 +4 位作者 王舒 杨沙 杨雪 张亚男 石学敏 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2012年第1期105-109,共5页
OBJECTIVES:To observe recovery in movement function in rats with middle cerebral artery occlusion(MCAO) after acupuncture treatment.METHODS:According to the randomized and controlled principle 1384 rats were divided i... OBJECTIVES:To observe recovery in movement function in rats with middle cerebral artery occlusion(MCAO) after acupuncture treatment.METHODS:According to the randomized and controlled principle 1384 rats were divided into the ba-sic control group(including the normal,sham,model control,model without intervention,Nimodipine,and para-Renzhong groups) and the acupuncture group(including the Neiguan(PC 6),Weizhong(BL 40),Sanyinjiao(SP 6),Chize(LU 5),Renzhong(GV 6) and non-acupoint groups).MCAO was modeled by Zea-longa's thread ligation and rats with scores of 1-3,as assessed by Zausinger's six-point method,were used in this study.Moreover,in the acupuncture group each acupoint was set with 12 different parameters by the orthogonal intersection method,resulting in 78 groups with 18 rats per group.The rats were treated by acupuncture once every 12 h for a total of six sessions and neurobehavioral scores were measured after each session.The neurobehavioral scores were compared by one-way ANOVA using the statistical software SPSS 17.0.RESULTS:After acupuncture therapy the mean neurobehavioral scores in MCAO rats increased gradually at each time point with a significant difference among the six scores,but with no significant differences between the fourth(48 h) and the fifth score(60 h),and between the fifth(60 h) and the sixth(72 h) score(P > 0.05).CONCLUSIONS:MCAO rats gradually recovered movement function over multiple acupuncture sessions.After the fouth acupuncture session(48 h),the neurobehavioral scores of rats with cerebral infarction remained stable.Acupuncture treatment had a reliable curative effect on movement function in cerebral infarction rats. 展开更多
关键词 MCAO Rat Acupunctural Therapy Neurobehavioral/neural Ethological score One-way Analysis ofVariance(One-way ANOVA)
原文传递
Feed-Forward Artificial Neural Network Model for Air Pollutant Index Prediction in the Southern Region of Peninsular Malaysia 被引量:1
8
作者 Azman Azid Hafizan Juahir +2 位作者 Mohd Talib Latif Sharifuddin Mohd Zain Mohamad Romizan Osman 《Journal of Environmental Protection》 2013年第12期1-10,共10页
This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in th... This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in the southern region of Peninsular Malaysia based on seven years database (2005-2011). Feed-forward ANN was used as a prediction method. The feed-forward ANN analysis demonstrated that the rotated principal component scores (RPCs) were the best input parameters to predict API. From the 4 RPCs, only 10 (CO, O3, PM10, NO2, CH4, NmHC, THC, wind direction, humidity and ambient temp) out of 12 prediction variables were the most significant parameters to predict API. The results proved that the ANN method can be applied successfully as tools for decision making and problem solving for better atmospheric management. 展开更多
关键词 Air POLLUTANT Index (API) Principal COMPONENT Analysis (PCA) Artificial neural Network (ANN) Rotated Principal COMPONENT scoreS (RPCs) FEED-FORWARD ANN
暂未订购
Neural Network Based Normalized Fusion Approaches for Optimized Multimodal Biometric Authentication Algorithm 被引量:2
9
作者 E. Sujatha A. Chilambuchelvan 《Circuits and Systems》 2016年第8期1199-1206,共8页
A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and fac... A multimodal biometric system is applied to recognize individuals for authentication using neural networks. In this paper multimodal biometric algorithm is designed by integrating iris, finger vein, palm print and face biometric traits. Normalized score level fusion approach is applied and optimized, encoded for matching decision. It is a multilevel wavelet, phase based fusion algorithm. This robust multimodal biometric algorithm increases the security level, accuracy, reduces memory size and equal error rate and eliminates unimodal biometric algorithm vulnerabilities. 展开更多
关键词 Multimodal Biometrics score Level Fusion Approach neural Network OPTIMIZATION
在线阅读 下载PDF
结合Z-score与优化技术的神经模糊系统 被引量:2
10
作者 杜宏庆 陈德旺 《软件导刊》 2022年第6期19-24,共6页
在构建高维数据的深度神经模糊系统时,对模糊子模块的精度、时间的要求较高。为此,提出一种结合Zscore与优化技术的神经模糊系统,改进模糊规则的计算方式。根据不同方法调整前提参数与结论参数,提出基于BP+LSE的ZONFS1、基于LSE的ZONFS... 在构建高维数据的深度神经模糊系统时,对模糊子模块的精度、时间的要求较高。为此,提出一种结合Zscore与优化技术的神经模糊系统,改进模糊规则的计算方式。根据不同方法调整前提参数与结论参数,提出基于BP+LSE的ZONFS1、基于LSE的ZONFS2、基于CGD+LSE的ZONFS3三种混合算法。实验结果表明,相较于ANFIS和ZONFS1算法,ZONFS3算法的耗时缩短了37%,且精度比DTR等算法提升了26%;相较于ZONFS3算法,ZONFS2的耗时减少,但精度降低;ZONFSi算法的平均总得分比ANFIS约高10分;相较于ANFIS算法,ZONFSi算法精度更高、耗时更少,在构建深度模型和处理高维数据方面优势显著。 展开更多
关键词 神经模糊系统 参数优化 模糊规则 Z-score CGD
在线阅读 下载PDF
Movie Score Prediction Model Based on Movie Plots
11
作者 Hui Xie Haomeng Wang +1 位作者 Chen Zhao Zhe Wang 《国际计算机前沿大会会议论文集》 2019年第2期633-634,共2页
With the rapid development of the movie industry, it is vital to evaluate and predict a movie’s quality. In this paper, a movie score prediction model is proposed based on the movie plots. Movie data was processed wi... With the rapid development of the movie industry, it is vital to evaluate and predict a movie’s quality. In this paper, a movie score prediction model is proposed based on the movie plots. Movie data was processed with the word2vec method, and the linear regression model and back propagation neural network algorithm were employed to establish the movie score prediction model. The high-quality classic movie plots of high-scoring movies summed up by big data contributed to a high synthesis of the wonderful content of the film. Experimental results show that it is effective in terms of movie evaluation and prediction, and helpful in understanding people’s preferences for movie plots. 展开更多
关键词 MOVIE BRIDGE PLOT MOVIE score prediction Linear Regression Model BACK propagation neural network
在线阅读 下载PDF
Research on Modeling Method of Credit Scoring for Small and Micro Enterprises Based on Neural Network
12
作者 YANG Manli LIU Xianqi 《外文科技期刊数据库(文摘版)经济管理》 2021年第10期169-173,共8页
Bank credit is one of the effective ways to meet the financing needs of small and micro enterprises and support the development of inclusive finance. In the credit audit of small and micro enterprises, quantitative ri... Bank credit is one of the effective ways to meet the financing needs of small and micro enterprises and support the development of inclusive finance. In the credit audit of small and micro enterprises, quantitative risk assessment based on statistical methods plays an increasingly important role. With the development of computer technology and artificial intelligence technology, enterprise general credit evaluation technology is gradually exploring from traditional method to deep learning algorithm. This paper introduces the method of modeling the credit score of small and micro enterprises based on the neural network algorithm, and according to the empirical results, verifies the feasibility of the application of the deep learning algorithm in the credit score of small and micro enterprises. 展开更多
关键词 small and micro enterprises credit score neural network deep learning
原文传递
Modeling the link between environmental,social,and governance disclosures and scores:the case of publicly traded companies in the Borsa Istanbul Sustainability Index
13
作者 Mustafa Tevfik Kartal Serpil Kilic Depren +2 位作者 Ugur Korkut Pata Dilvin Taskin Tuba Savli 《Financial Innovation》 2024年第1期2481-2500,共20页
This study constructs a proposed model to investigate the link between environmental,social,and governance(ESG)disclosures and ESG scores for publicly traded companies in the Borsa Istanbul Sustainability(XUSRD)index.... This study constructs a proposed model to investigate the link between environmental,social,and governance(ESG)disclosures and ESG scores for publicly traded companies in the Borsa Istanbul Sustainability(XUSRD)index.In this context,this study considers 66 companies,examining recently structured ESG disclosures for 2022 that were published for the first time as novel data and applying a multilayer perceptron(MLP)artificial neural network algorithm.The relevant results are fourfold.(1)The MLP algorithm has explanatory power(i.e.,R^(2))of 79% in estimating companies’ESG scores.(2)Common,environment,social,and governance pillars have respective weights of 21.04%,44.87%,30.34%,and 3.74% in total ESG scores.(3)The absolute and relative significance of each ESG reporting principle for companies’ESG scores varies.(4)According to absolute and relative significance,the most effective ESG principle is the common principle,followed by social and environmental principles,whereas governance principles have less significance.Overall,the results demonstrate that applying a linear approach to complete deficient ESG disclosures is inefficient for increasing companies’ESG scores;instead,companies should focus on the ESG principles that have the highest relative significance.The findings of this study contribute to the literature by defining the most significant ESG principles for stimulating the ESG scores of companies in the XUSRD index. 展开更多
关键词 ESG disclosures ESG scores New ESG reporting scheme Artificial neural network Borsa Istanbul Sustainability Index TURKIYE
在线阅读 下载PDF
多源异质数据下深度神经网络的整合分析及其应用 被引量:1
14
作者 王小燕 冮建伟 +1 位作者 王洁丹 王德青 《统计研究》 北大核心 2025年第2期122-134,共13页
随着计算机技术的发展,各行各业累积和存储了丰富的数据。这些数据往往具有来源差异性、高维性特点,基于这些特征的多源数据建模是统计学的热点问题。针对多源异质数据,本文提出深度神经网络整合分析模型(IADNN)。该模型建立了L_(1)-CMC... 随着计算机技术的发展,各行各业累积和存储了丰富的数据。这些数据往往具有来源差异性、高维性特点,基于这些特征的多源数据建模是统计学的热点问题。针对多源异质数据,本文提出深度神经网络整合分析模型(IADNN)。该模型建立了L_(1)-CMCP惩罚,以识别重要特征以及处理数据的异质性,其中外层MCP识别对多源数据集整体显著的特征;中层MCP识别特征在数据集层面的异质性;内层Lasso识别DNN节点的异质性。这种嵌套设计旨在促进数据集间的信息共享。本文对L_(1)-CMCP进行局部线性近似,再采用近端梯度下降算法进行模型估计。模拟分析表明,IADNN在特征选择和分类预测方面均有良好表现。当多源数据部分异质时,所提方法的F_(1)分数、FPR等评估指标均优于各数据集独立建模和合并建模的方法;在多源数据完全异质或完全同质时,所提方法取得了与理论最佳模型相近的效果。最后,将IADNN应用于不同经济发展水平地区的信用违约数据,发现该模型在风险指标选择和违约预测方面具备有效性。 展开更多
关键词 多源数据 整合分析 深度神经网络 信用评分
在线阅读 下载PDF
A Hybrid Approach for Predicting Probability of Default in Peer-to-Peer (P2P) Lending Platforms Using Mixture-of-Experts Neural Network
15
作者 Christopher Watitwa Makokha Ananda Kube Oscar Ngesa 《Journal of Data Analysis and Information Processing》 2024年第2期151-162,共12页
Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to eval... Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to evaluate loan applicants’ creditworthiness. This study aims to estimate default probabilities using a mixture-of-experts neural network in P2P lending. The approach involves coupling unsupervised clustering to capture essential data properties with a classification algorithm based on the mixture-of-experts structure. This classic design enhances model capacity without significant computational overhead. The model was tested using P2P data from Lending Club, comparing it to other methods like Logistic Regression, AdaBoost, Gradient Boosting, Decision Tree, Support Vector Machine, and Random Forest. The hybrid model demonstrated superior performance, with a Mean Squared Error reduction of at least 25%. 展开更多
关键词 Credit-Scoring Clustering Classification neural Networks
在线阅读 下载PDF
茶香风味蒸馏酒工艺优化及挥发性风味成分分析 被引量:1
16
作者 汪江波 夏啸 +5 位作者 毛春奎 陈家豪 何超 蔡凤娇 张瑞景 徐健 《中国酿造》 北大核心 2025年第5期233-238,共6页
为了提高茶叶副产物的利用率,以新鲜麦芽(即发芽大麦)与绿茶梗作为混合发酵原料,采用传统固态发酵制备茶香风味蒸馏酒。以感官评分和乙酸乙酯含量为评价指标,在单因素试验基础上,采用中心组合设计(CCD)试验以及人工神经网络(ANN)分析结... 为了提高茶叶副产物的利用率,以新鲜麦芽(即发芽大麦)与绿茶梗作为混合发酵原料,采用传统固态发酵制备茶香风味蒸馏酒。以感官评分和乙酸乙酯含量为评价指标,在单因素试验基础上,采用中心组合设计(CCD)试验以及人工神经网络(ANN)分析结合遗传算法对其发酵工艺进行优化,并采用气相色谱-质谱联用(GC-MS)法测定酒体挥发性风味成分。结果表明,最佳发酵工艺条件为:绿茶梗添加量7%、熟粮含水率52%、酒曲添加量0.7%,发酵时间7 d,发酵温度25℃。在此优化条件下,茶香风味蒸馏酒的乙酸乙酯含量为0.46 g/L,感官评分为86.67分,酒精度为55%vol。基于GC-MS共检测出31种挥发性风味物质,其中,醇类5种、酯类16种、醛酮类5种及其他类5种。酯类物质含量最高,占所有风味物质含量的52%。茶香风味蒸馏酒茶香浓郁,口感醇厚,风味典型,一定程度上丰富了茶酒种类。 展开更多
关键词 茶香风味蒸馏酒 绿茶梗 人工神经网络分析 挥发性风味成分 乙酸乙酯 感官评分
在线阅读 下载PDF
基于人工智能的散打项目动作识别与自动评分方法研究 被引量:1
17
作者 孙文芳 吴泳锟 +2 位作者 林承德 徐永峰 李嘉裕 《体育学研究》 北大核心 2025年第3期119-128,共10页
目的:针对散打技术动作复杂,评分难度高的特点,提出基于人工智能的散打动作智能评分方法,以提高比赛中动作识别与评分的准确性。方法:收集2015—2024年间发布于抖音、快手等网络平台上的全国武术散打锦标赛、全国武术散打冠军赛和全运... 目的:针对散打技术动作复杂,评分难度高的特点,提出基于人工智能的散打动作智能评分方法,以提高比赛中动作识别与评分的准确性。方法:收集2015—2024年间发布于抖音、快手等网络平台上的全国武术散打锦标赛、全国武术散打冠军赛和全运会武术散打比赛视频,构建并标注了散打动作数据集。在此基础上,结合图卷积网络(Graph Convolutional Network,GCN)PoseSAGE模型,加入残差连接,构建了改进模型PoseSAGERES,并开展了与PoseGNN、PoseSAGE模型的对比实验。实验结果表明,PoseSAGERES模型在小规模数据集上实现了73.76%的分类准确率,显著优于其他模型。一致性分析显示,该方法与人工评判结果具有良好一致性,体现出在散打动作智能评分中的应用潜力。研究证实了基于人工智能的散打智能评分方法的有效性,以及残差链接机制在提升复杂动作识别准确率方面的促进作用,为散打动作的自动化分析与智能评分提供了创新性解决方案。未来的研究将着力于扩展数据集规模,丰富动作类别,进一步优化模型性能与泛化能力。 展开更多
关键词 散打 人工智能 动作识别 智能评分 图卷积神经网络模型
在线阅读 下载PDF
一种加权分数融合的牙科X线病变分类方法
18
作者 李炜 王远军 刘玉 《小型微型计算机系统》 北大核心 2025年第5期1169-1176,共8页
根尖周X线片是诊断龋病和根尖周炎常用手段之一,传统的诊断方式通常依赖牙医的经验,主观性较强.针对这一问题,本文提出了一种基于混合注意力机制和加权分数融合的分类方法(DenseNet201-PCAM).该方法以DenseNet201为基线网络,结合迁移学... 根尖周X线片是诊断龋病和根尖周炎常用手段之一,传统的诊断方式通常依赖牙医的经验,主观性较强.针对这一问题,本文提出了一种基于混合注意力机制和加权分数融合的分类方法(DenseNet201-PCAM).该方法以DenseNet201为基线网络,结合迁移学习策略使网络在小数据集上有更好的表现;通过引入混合注意力机制提高模型对局部特征信息的关注程度,并采用可视化方式呈现出所关注区域.在预测阶段,通过加权分数融合策略进一步提高了模型的分类表现.最后,在1838张根尖周X线片中,所提出方法的分类准确率、特异性和F1指数分别达到了93.41%、96.61%和93.65%,相较于基线网络分别提升了4.62%、2.33%和4.52%.实验结果表明,所提出模型可以有效的实现龋病和根尖周炎的分类. 展开更多
关键词 卷积神经网络 混合注意力 加权分数融合 迁移学习 根尖周X线片
在线阅读 下载PDF
多传感器数据融合的边坡滑坡预警模型与应用 被引量:2
19
作者 王贻朋 徐大伟 +4 位作者 魏明阳 李波 胡慧敏 杨明生 徐玉玲 《测绘通报》 北大核心 2025年第7期169-173,共5页
边坡滑坡作为一种突发性、高破坏性的地质灾害,严重威胁着人类社会的生产生活安全。由于单一传感器对多因素耦合效应的识别能力不足,使得滑坡预警的全面性和准确性受到限制,因此本文提出了一种基于BP神经网络的多传感器融合预警模型。... 边坡滑坡作为一种突发性、高破坏性的地质灾害,严重威胁着人类社会的生产生活安全。由于单一传感器对多因素耦合效应的识别能力不足,使得滑坡预警的全面性和准确性受到限制,因此本文提出了一种基于BP神经网络的多传感器融合预警模型。借助于BP神经网络非线性特征提取能力,分别对倾斜仪、GNSS位移传感器和雨量传感器的数据进行合理训练与预测,综合3种传感器归一化的预测数据,利用加权评分的方式融合多传感器预测结果,完成滑坡风险的最终评分,建设高效、准确的监测系统。该预警系统在某输油管道附近的边坡被成功应用并取得较好效果,具有较高的推广价值。 展开更多
关键词 滑坡监测 多传感器数据融合 BP神经网络 风险评分 地灾检测
原文传递
基于随机森林的冠状动脉狭窄风险识别模型
20
作者 吕勇峰 王钰婧 +3 位作者 张乐怡 李一心 原娜 田晶 《中山大学学报(医学科学版)》 北大核心 2025年第1期138-146,共9页
【目的】采用机器学习方法构建冠状动脉狭窄风险识别模型,分析影响冠状动脉狭窄的主要因素。【方法】连续纳入2013年1月至2020年5月就诊于山西省两所医院,经冠状动脉造影确诊为冠心病的患者。以患者临床资料为自变量,Gensini积分为结局... 【目的】采用机器学习方法构建冠状动脉狭窄风险识别模型,分析影响冠状动脉狭窄的主要因素。【方法】连续纳入2013年1月至2020年5月就诊于山西省两所医院,经冠状动脉造影确诊为冠心病的患者。以患者临床资料为自变量,Gensini积分为结局变量,采用Logistic回归、反向传播神经网络(BPNN)和随机森林(RF)算法构建冠状动脉狭窄风险识别模型。通过灵敏度(TPR)、特异度(TNR)、准确率(ACC)、阳性预测值(PV+)、阴性预测值(PV-)、受试者工作特征曲线下面积(AUC)和校准曲线进行模型评价。并对最佳模型进行特征重要性排序。【结果】Logistic回归、反向传播神经网络和随机森林模型的TPR分别为75.76%、74.30%和93.70%,ACC分别为74.05%、72.30%和79.49%,AUC分别为0.7399、0.7231、0.7522,随机森林模型综合效能表现最佳。随机森林模型结果表明,胸痛症状、心电图提示ST段异常、室性早搏、合并高血压、房颤、心脏彩超提示节段性室壁运动异常、主动脉瓣关闭不全、肺动脉瓣关闭不全、心血管疾病家族史、体质量指数是冠脉狭窄的前10位重要变量。【结论】在识别冠状动脉狭窄方面,随机森林模型表现出最佳的综合性能,可较为准确地评估冠脉狭窄的程度,为临床干预提供科学依据。 展开更多
关键词 GENSINI积分 反向传播神经网络 随机森林 冠状动脉狭窄 机器学习
暂未订购
上一页 1 2 14 下一页 到第
使用帮助 返回顶部