Neural organoids and confocal microscopy have the potential to play an important role in microconnectome research to understand neural patterns.We present PLayer,a plug-and-play embedded neural system,which demonstrat...Neural organoids and confocal microscopy have the potential to play an important role in microconnectome research to understand neural patterns.We present PLayer,a plug-and-play embedded neural system,which demonstrates the utilization of sparse confocal microscopy layers to interpolate continuous axial resolution.With an embedded system focused on neural network pruning,image scaling,and post-processing,PLayer achieves high-performance metrics with an average structural similarity index of 0.9217 and a peak signal-to-noise ratio of 27.75 dB,all within 20 s.This represents a significant time saving of 85.71%with simplified image processing.By harnessing statistical map estimation in interpolation and incorporating the Vision Transformer–based Restorer,PLayer ensures 2D layer consistency while mitigating heavy computational dependence.As such,PLayer can reconstruct 3D neural organoid confocal data continuously under limited computational power for the wide acceptance of fundamental connectomics and pattern-related research with embedded devices.展开更多
Small nucleolar RNAs (snoRNAs) are a group of non-protein coding RNAs that mainly function in ribosomal RNA (rRNA) and small nuclear RNA (snRNA) modification.
Objective To investigate the difference in tumor conventional imaging findings and texture features on T2 weighted images between glioblastoma and primary central neural system(CNS) lymphoma. Methods The pre-operative...Objective To investigate the difference in tumor conventional imaging findings and texture features on T2 weighted images between glioblastoma and primary central neural system(CNS) lymphoma. Methods The pre-operative MRI data of 81 patients with glioblastoma and 28 patients with primary CNS lymphoma admitted to the Chinese PLA General Hospital and Hainan Hospital of Chinese PLA General Hospital were retrospectively collected. All patients underwent plain MR imaging and enhanced T1 weighted imaging to visualize imaging features of lesions. Texture analysis of T2 weighted imaging(T2 WI) was performed by use of GLCM texture plugin of ImageJ software, and the texture parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were measured. Independent sample t-test and Mann-Whitney U test were performed for the between-group comparisons, regression model was established by Binary Logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to compare the diagnostic efficacy. Results The conventional imaging features including cystic and necrosis changes(P = 0.000), ‘Rosette' changes(P = 0.000) and ‘incision sign'(P = 0.000), except ‘flame-like edema'(P = 0.635), presented significantly statistical difference between glioblastoma and primary CNS lymphoma. The texture features, ASM, Contrast, Correlation, IDM and Entropy, showed significant differences between glioblastoma and primary CNS lympoma(P = 0.006,0.000, 0.002, 0.000, and 0.015 respectively). The area under the ROC curve was 0.671, 0.752, 0.695, 0.720 and 0.646 respectively, and the area under the ROC curve was 0.917 for the combined texture variables(Contrast, cystic and necrosis, ‘Rosette' changes, and ‘incision sign') in the model of Logistic regression. Binary Logistic regression analysis demonstrated that cystic and necrosis changes, ‘Rosette' changes and ‘incision sign' and texture Contrast could be considered as the specific texture variables for the differential diagnosis of glioblastoma and primary CNS lymphoma. Conclusion The texture features of T2 WI and conventional imaging findings may be used to distinguish glioblastoma from primary CNS lymphoma.展开更多
The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in t...The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including bIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.展开更多
Simulating biological olfactory neural system, KⅢnetwork, which is a high-dimensional chaotic neural network, is designed in this paper. Different from conventional artificial neural network, the KⅢnetwork works...Simulating biological olfactory neural system, KⅢnetwork, which is a high-dimensional chaotic neural network, is designed in this paper. Different from conventional artificial neural network, the KⅢnetwork works in its chaotic trajectory. It can simulate not only the output EEG waveform observed in electrophysiological experiments, but also the biological intelligence for pattern classification. The simulation analysis and application to the recognition of handwriting numerals are presented here. The classification performance of the KⅢnetwork at different noise levels was also investigated.展开更多
In this paper, based on new Lyapunov function, the asymptotic properties of the dynamic neural system with asymmetric connection weights are investigated. Since the dynamic neural system with asymmetric connection wei...In this paper, based on new Lyapunov function, the asymptotic properties of the dynamic neural system with asymmetric connection weights are investigated. Since the dynamic neural system with asymmetric connection weights is more general than that with symmetric ones, the new results are significant in both theory and applications. Specially the new result can cover the asymptotic stability results of linear systems as special cases.展开更多
Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain....Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv...Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this wor...Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this work introduces a machine-learning-based,data-driven scheme to overcome the challenges encountered,with a trained neural network(NN)assuming the role of a surrogate model that captures the system’s dynamics and subsequently enables QOC to be performed on the NN instead of on the real system.The trained NN surrogate proves effective for practical QOC tasks and is further demonstrated to be adaptable to different experimental conditions,remaining robust across varying system sizes and pulse durations.展开更多
This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of t...This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l...In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application.展开更多
Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.Ho...Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.展开更多
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven...Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).展开更多
To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural netw...To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems.展开更多
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a...Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively.展开更多
Traditionally,the spatiotemporal dynamics of neural networks have been analyzed in the locally continuous domain.While this modeling approach is straightforward and practical,it fails to encapsulate real-world network...Traditionally,the spatiotemporal dynamics of neural networks have been analyzed in the locally continuous domain.While this modeling approach is straightforward and practical,it fails to encapsulate real-world networks’intricate topological structures and evolution.Currently,the mechanisms of stability switches induced by time delays and diffusion effects in networkorganized systems are still vague.Besides,effective dynamic optimization strategies for network-organized models remain to be devised.In this study,we develop a delayed reaction-diffusion neural network model on complex networks.This system incorporates the effects of inter-nodal diffusion coupling and exhibits profound architectural complexity.We then pioneer the proportional-integral-derivative(PID)feedback control into the network-organized model to modulate dynamic behaviors.The linear stability analysis is conducted firstly,demonstrating that Turing patterns and Hopf bifurcation can be induced in the controlled neural network by varying diffusion coefficients and time delays.Subsequently,the bifurcation direction is deduced via the center manifold theorem.Finally,a series of simulations are performed to validate the theoretical analysis and substantiate the efficacy of the PID control strategy.The results exhibit that the PID feedback controller can flexibly regulate the dynamics of the network-organized systems and possesses excellent disturbance rejection capabilities.展开更多
基金supported by the National Key R&D Program of China(Grant No.2021YFA1001000)the National Natural Science Foundation of China(Grant Nos.82111530212,U23A20282,and 61971255)+2 种基金the Natural Science Founda-tion of Guangdong Province(Grant No.2021B1515020092)the Shenzhen Bay Laboratory Fund(Grant No.SZBL2020090501014)the Shenzhen Science,Technology and Innovation Commission(Grant Nos.KJZD20231023094659002,JCYJ20220530142809022,and WDZC20220811170401001).
文摘Neural organoids and confocal microscopy have the potential to play an important role in microconnectome research to understand neural patterns.We present PLayer,a plug-and-play embedded neural system,which demonstrates the utilization of sparse confocal microscopy layers to interpolate continuous axial resolution.With an embedded system focused on neural network pruning,image scaling,and post-processing,PLayer achieves high-performance metrics with an average structural similarity index of 0.9217 and a peak signal-to-noise ratio of 27.75 dB,all within 20 s.This represents a significant time saving of 85.71%with simplified image processing.By harnessing statistical map estimation in interpolation and incorporating the Vision Transformer–based Restorer,PLayer ensures 2D layer consistency while mitigating heavy computational dependence.As such,PLayer can reconstruct 3D neural organoid confocal data continuously under limited computational power for the wide acceptance of fundamental connectomics and pattern-related research with embedded devices.
文摘Small nucleolar RNAs (snoRNAs) are a group of non-protein coding RNAs that mainly function in ribosomal RNA (rRNA) and small nuclear RNA (snRNA) modification.
文摘Objective To investigate the difference in tumor conventional imaging findings and texture features on T2 weighted images between glioblastoma and primary central neural system(CNS) lymphoma. Methods The pre-operative MRI data of 81 patients with glioblastoma and 28 patients with primary CNS lymphoma admitted to the Chinese PLA General Hospital and Hainan Hospital of Chinese PLA General Hospital were retrospectively collected. All patients underwent plain MR imaging and enhanced T1 weighted imaging to visualize imaging features of lesions. Texture analysis of T2 weighted imaging(T2 WI) was performed by use of GLCM texture plugin of ImageJ software, and the texture parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were measured. Independent sample t-test and Mann-Whitney U test were performed for the between-group comparisons, regression model was established by Binary Logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to compare the diagnostic efficacy. Results The conventional imaging features including cystic and necrosis changes(P = 0.000), ‘Rosette' changes(P = 0.000) and ‘incision sign'(P = 0.000), except ‘flame-like edema'(P = 0.635), presented significantly statistical difference between glioblastoma and primary CNS lymphoma. The texture features, ASM, Contrast, Correlation, IDM and Entropy, showed significant differences between glioblastoma and primary CNS lympoma(P = 0.006,0.000, 0.002, 0.000, and 0.015 respectively). The area under the ROC curve was 0.671, 0.752, 0.695, 0.720 and 0.646 respectively, and the area under the ROC curve was 0.917 for the combined texture variables(Contrast, cystic and necrosis, ‘Rosette' changes, and ‘incision sign') in the model of Logistic regression. Binary Logistic regression analysis demonstrated that cystic and necrosis changes, ‘Rosette' changes and ‘incision sign' and texture Contrast could be considered as the specific texture variables for the differential diagnosis of glioblastoma and primary CNS lymphoma. Conclusion The texture features of T2 WI and conventional imaging findings may be used to distinguish glioblastoma from primary CNS lymphoma.
文摘The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including bIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.
文摘Simulating biological olfactory neural system, KⅢnetwork, which is a high-dimensional chaotic neural network, is designed in this paper. Different from conventional artificial neural network, the KⅢnetwork works in its chaotic trajectory. It can simulate not only the output EEG waveform observed in electrophysiological experiments, but also the biological intelligence for pattern classification. The simulation analysis and application to the recognition of handwriting numerals are presented here. The classification performance of the KⅢnetwork at different noise levels was also investigated.
文摘In this paper, based on new Lyapunov function, the asymptotic properties of the dynamic neural system with asymmetric connection weights are investigated. Since the dynamic neural system with asymmetric connection weights is more general than that with symmetric ones, the new results are significant in both theory and applications. Specially the new result can cover the asymptotic stability results of linear systems as special cases.
文摘Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金founded by the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling(Anhui University of Technology)(No.SKF21-06)Research Fund for Young Teachers of Anhui University of Technology in 2020(No.QZ202001).
文摘Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100)the National Natural Science Foundation of China(Grant Nos.12361131576,92265205,and 92476205).
文摘Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this work introduces a machine-learning-based,data-driven scheme to overcome the challenges encountered,with a trained neural network(NN)assuming the role of a surrogate model that captures the system’s dynamics and subsequently enables QOC to be performed on the NN instead of on the real system.The trained NN surrogate proves effective for practical QOC tasks and is further demonstrated to be adaptable to different experimental conditions,remaining robust across varying system sizes and pulse durations.
文摘This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
文摘In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application.
文摘Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.
基金supported by the National Natural Science Foundation of China(Grant No.U2241263)the fellowship of China Postdoctoral Science Foundation(Grant No.2024M750310).
文摘Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).
基金supported by the China State Railway Group Co.,Ltd.Science and Technology Research and Development Program Project(Grant No.L2024G007)the Natural Science Foundation of Hunan Province(Grant No.2024JJ5427)+1 种基金the National Natural Science Foundation of China(Grant No.52478321,52078485)the Science and Technology Research and Development Program Project of China Railway Group Limited(Grant No.2021-Special-08,2022-Key-06&2023-Key-22).
文摘To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems.
基金supported by the National Natural Science Foundation of China(62263014)the Yunnan Provincial Basic Research Project(202301AT070443,202401AT070344).
文摘Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.62073172,62233004,62073076)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20221329)Jiangsu Provincial Scientific Research Center of Applied Mathematics(Grant No.BK20233002).
文摘Traditionally,the spatiotemporal dynamics of neural networks have been analyzed in the locally continuous domain.While this modeling approach is straightforward and practical,it fails to encapsulate real-world networks’intricate topological structures and evolution.Currently,the mechanisms of stability switches induced by time delays and diffusion effects in networkorganized systems are still vague.Besides,effective dynamic optimization strategies for network-organized models remain to be devised.In this study,we develop a delayed reaction-diffusion neural network model on complex networks.This system incorporates the effects of inter-nodal diffusion coupling and exhibits profound architectural complexity.We then pioneer the proportional-integral-derivative(PID)feedback control into the network-organized model to modulate dynamic behaviors.The linear stability analysis is conducted firstly,demonstrating that Turing patterns and Hopf bifurcation can be induced in the controlled neural network by varying diffusion coefficients and time delays.Subsequently,the bifurcation direction is deduced via the center manifold theorem.Finally,a series of simulations are performed to validate the theoretical analysis and substantiate the efficacy of the PID control strategy.The results exhibit that the PID feedback controller can flexibly regulate the dynamics of the network-organized systems and possesses excellent disturbance rejection capabilities.