In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigat...In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigates the performance of ML methods when predicting different measures of stock returns from various factor models and investigates the feature importance and interaction effects among firm-specific variables and macroeconomic factors in this context.Our findings reveal that neural network models exhibit consistent performance across different stock return measures when they rely solely on firm-specific characteristic variables.However,the inclusion of macroeconomic factors from the financial market,real economic activities,and investor sentiment leads to substantial improvements in the model performance.Notably,the degree of improvement varies with the specific measures of stock returns under consideration.Furthermore,our analysis indicates that,after the inclusion of macroeconomic factors,there is a dissimilarity in model performance,variable importance,and interaction effects among macroeconomic and firm-specific variables,particularly concerning abnormal returns derived from the Fama–French three-and five-factor models compared with excess returns.This divergence is primarily attributed to the extent to which these factor models remove the variance associated with the macroeconomic variables.These findings collectively offer valuable insights into the efficacy of neural network models for stock return predictions and contribute to a deeper understanding of the intricate relationship between factor models,stock returns,and macroeconomic conditions in the domain of empirical asset pricing.展开更多
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ...Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.展开更多
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte...To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.展开更多
A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to appro...A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.展开更多
In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predi...In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predicting the fatigue life of structures becomes notably arduous.This paper proposed an approach to predict the fatigue life of structure based on the optimized load spectra,which is accurately estimated by an efficient hinging hyperplane neural network(EHH-NN)model.The construction of the EHH-NN model includes initial network generation and parameter optimization.Through the combination of working conditions design,multi-body dynamics analysis and structural static mechanics analysis,the simulated load spectra of the structure are obtained.The simulated load spectra are taken as the input variables for the optimized EHH-NN model,while the measurement load spectra are used as the output variables.The prediction results of case structure indicate that the optimized EHH-NN model can achieve the high-accuracy load spectra,in comparison with support vector machine(SVM),random forest(RF)model and back propagation(BP)neural network.The error rate between the prediction values and the measurement values of the optimized EHH-NN model is 4.61%.In the Cauchy-Lorentz distribution,the absolute error data of 92%with EHH-NN model appear in the intermediate range of±1.65%.Also,the fatigue life analysis is performed for the case structure,based on the accurately predicted load spectra.The fatigue life of the case structure is calculated based on the comparison between the measured and predicted load spectra,with an accuracy of 93.56%.This research proposes the optimized EHH-NN model can more accurately reflect the measurement load spectra,enabling precise calculation of fatigue life.Additionally,the optimized EHH-NN model provides reliability assessment for industrial engineering equipment.展开更多
Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,ex...Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,exploring the relationship between synthetic conditions and PLA molecular weight is crucially important.In this work,direct polycondensation combined with overlay sampling uniform design(OSUD)was applied to synthesize the low molecular weight PLA.Then a multiple regression model and two artificial neural network models on PLA molecular weight versus reaction temperature,reaction time,and catalyst dosage were developed for PLA molecular weight prediction.The characterization results indicated that the low molecular weight PLA was efficiently synthesized under this method.Meanwhile,the experimental dataset acquired from OSUD successfully established three predictive models for PLA molecular weight.Among them,both artificial neural network models had significantly better predictive performance than the regression model.Notably,the radial basis function neural network model had the best predictive accuracy with only 11.9%of mean relative error on the validation dataset,which improved by 67.7%compared with the traditional multiple regression model.This work successfully predicted PLA molecular weight in a direct polycondensation process using artificial neural network models combined with OSUD,which provided guidance for the future implementation of molecular weight-controlled polymer's synthesis.展开更多
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ...Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.展开更多
Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the ...Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model.展开更多
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced...Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.展开更多
In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate ...In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t...Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode...Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).展开更多
Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitropbenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and ...Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitropbenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). An artificial neural network model (ANN) was developed to predict the photocatalytic removal of 4-NP in the presence of TiOz nanoparticles prepared under desired conditions. The comparison between the predicted results by designed ANN model and the experimental data proved that modeling of the removal process of 4-NP using artificial neural network was a precise method to predict the extent of 4-NP removal under different conditions.展开更多
In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperatur...In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperature in the process of dephosphorization by laying correlative degree weights to all input factors related was used. Then sim- ulation experiment of model newly established is conducted utilizing 210 data from a domestic steel plant. The results show that hit rate arrives at 56.45~~ when error is within plus or minus 5%, and the value is 100% when within ~10%. Comparing to the traditional neural network prediction model, the accuracy almost increases by 6. 839o//oo. Thus, the simulation prediction fits the real perfectly, which accounts for that neural network model for terminative tempera- ture based on grey theory can reflect accurately the practice in dephosphorization. Naturally, this method is effective and nraeticahle.展开更多
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic syste...This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.展开更多
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t...The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.展开更多
文摘In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigates the performance of ML methods when predicting different measures of stock returns from various factor models and investigates the feature importance and interaction effects among firm-specific variables and macroeconomic factors in this context.Our findings reveal that neural network models exhibit consistent performance across different stock return measures when they rely solely on firm-specific characteristic variables.However,the inclusion of macroeconomic factors from the financial market,real economic activities,and investor sentiment leads to substantial improvements in the model performance.Notably,the degree of improvement varies with the specific measures of stock returns under consideration.Furthermore,our analysis indicates that,after the inclusion of macroeconomic factors,there is a dissimilarity in model performance,variable importance,and interaction effects among macroeconomic and firm-specific variables,particularly concerning abnormal returns derived from the Fama–French three-and five-factor models compared with excess returns.This divergence is primarily attributed to the extent to which these factor models remove the variance associated with the macroeconomic variables.These findings collectively offer valuable insights into the efficacy of neural network models for stock return predictions and contribute to a deeper understanding of the intricate relationship between factor models,stock returns,and macroeconomic conditions in the domain of empirical asset pricing.
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
基金financially supported by the National Natural Science Foundation of China(Nos.51275415 and50905144)the Natural Science Basic Research Plan in Shanxi Province(No.2011JQ6004)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B08040)
文摘Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.
基金Project supported by the National Natural Science Foundation of China (No. 60504024), and Zhejiang Provincial Education Depart-ment (No. 20050905), China
文摘A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design ap- proach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.
基金Supported by National Natural Science Foundation of China(Grant No.51805447)Natural Science Foundation of Jiangsu Higher Education of China(Grant No.22KJB460010)+2 种基金Jiangsu Provincial Innovation and Promotion Project of Forestry Science and Technology of China(Grant No.LYKJ[2023]06)Yangzhou Science and Technology Plan(City School Cooperation Project)of China(Grant No.YZ2022193)Cyan Blue Project of Yangzhou University of China。
文摘In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predicting the fatigue life of structures becomes notably arduous.This paper proposed an approach to predict the fatigue life of structure based on the optimized load spectra,which is accurately estimated by an efficient hinging hyperplane neural network(EHH-NN)model.The construction of the EHH-NN model includes initial network generation and parameter optimization.Through the combination of working conditions design,multi-body dynamics analysis and structural static mechanics analysis,the simulated load spectra of the structure are obtained.The simulated load spectra are taken as the input variables for the optimized EHH-NN model,while the measurement load spectra are used as the output variables.The prediction results of case structure indicate that the optimized EHH-NN model can achieve the high-accuracy load spectra,in comparison with support vector machine(SVM),random forest(RF)model and back propagation(BP)neural network.The error rate between the prediction values and the measurement values of the optimized EHH-NN model is 4.61%.In the Cauchy-Lorentz distribution,the absolute error data of 92%with EHH-NN model appear in the intermediate range of±1.65%.Also,the fatigue life analysis is performed for the case structure,based on the accurately predicted load spectra.The fatigue life of the case structure is calculated based on the comparison between the measured and predicted load spectra,with an accuracy of 93.56%.This research proposes the optimized EHH-NN model can more accurately reflect the measurement load spectra,enabling precise calculation of fatigue life.Additionally,the optimized EHH-NN model provides reliability assessment for industrial engineering equipment.
基金funded by the Zhejiang Provincial Natural Science Foundation of China(LD21B060001)the National Natural Science Foundation of China(22078296,21576240).
文摘Polylactic acid(PLA)is a potential polymer material used as a substitute for traditional plastics,and the accurate molecular weight distribution range of PLA is strictly required in practical applications.Therefore,exploring the relationship between synthetic conditions and PLA molecular weight is crucially important.In this work,direct polycondensation combined with overlay sampling uniform design(OSUD)was applied to synthesize the low molecular weight PLA.Then a multiple regression model and two artificial neural network models on PLA molecular weight versus reaction temperature,reaction time,and catalyst dosage were developed for PLA molecular weight prediction.The characterization results indicated that the low molecular weight PLA was efficiently synthesized under this method.Meanwhile,the experimental dataset acquired from OSUD successfully established three predictive models for PLA molecular weight.Among them,both artificial neural network models had significantly better predictive performance than the regression model.Notably,the radial basis function neural network model had the best predictive accuracy with only 11.9%of mean relative error on the validation dataset,which improved by 67.7%compared with the traditional multiple regression model.This work successfully predicted PLA molecular weight in a direct polycondensation process using artificial neural network models combined with OSUD,which provided guidance for the future implementation of molecular weight-controlled polymer's synthesis.
基金Financial support provided by the National Natural Science Foundation of China(Grant Nos.11702042 and 91952104)。
文摘Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.
基金the Project of the Key Open Laboratory of Atmospheric Detection,China Meteorological Administration(2023KLAS02M)the Second Batch of Science and Technology Project of China Meteorological Administration("Jiebangguashuai"):the Research and Development of Short-term and Near-term Warning Products for Severe Convective Weather in Beijing-Tianjin-Hebei Region(CMAJBGS202307).
文摘Firstly,based on the data of air quality and the meteorological data in Baoding City from 2017 to 2021,the correlations of meteorological elements and pollutants with O_(3)concentration were explored to determine the forecast factors of forecast models.Secondly,the O_(3)-8h concentration in Baoding City in 2021 was predicted based on the constructed models of multiple linear regression(MLR),backward propagation neural network(BPNN),and auto regressive integrated moving average(ARIMA),and the predicted values were compared with the observed values to test their prediction effects.The results show that overall,the MLR,BPNN and ARIMA models were able to forecast the changing trend of O_(3)-8h concentration in Baoding in 2021,but the BPNN model gave better forecast results than the ARIMA and MLR models,especially for the prediction of the high values of O_(3)-8h concentration,and the correlation coefficients between the predicted values and the observed values were all higher than 0.9 during June-September.The mean error(ME),mean absolute error(MAE),and root mean square error(RMSE)of the predicted values and the observed values of daily O_(3)-8h concentration based on the BPNN model were 0.45,19.11 and 24.41μg/m 3,respectively,which were significantly better than those of the MLR and ARIMA models.The prediction effects of the MLR,BPNN and ARIMA models were the best at the pollution level,followed by the excellent level,and it was the worst at the good level.In comparison,the prediction effect of BPNN model was better than that of the MLR and ARIMA models as a whole,especially for the pollution and excellent levels.The TS scores of the BPNN model were all above 66%,and the PC values were above 86%.The BPNN model can forecast the changing trend of O_(3)concentration more accurately,and has a good practical application value,but at the same time,the predicted high values of O_(3)concentration should be appropriately increased according to error characteristics of the model.
文摘Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.
文摘In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
文摘Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).
文摘Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitropbenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). An artificial neural network model (ANN) was developed to predict the photocatalytic removal of 4-NP in the presence of TiOz nanoparticles prepared under desired conditions. The comparison between the predicted results by designed ANN model and the experimental data proved that modeling of the removal process of 4-NP using artificial neural network was a precise method to predict the extent of 4-NP removal under different conditions.
基金Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China (2006BAE03A07)
文摘In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperature in the process of dephosphorization by laying correlative degree weights to all input factors related was used. Then sim- ulation experiment of model newly established is conducted utilizing 210 data from a domestic steel plant. The results show that hit rate arrives at 56.45~~ when error is within plus or minus 5%, and the value is 100% when within ~10%. Comparing to the traditional neural network prediction model, the accuracy almost increases by 6. 839o//oo. Thus, the simulation prediction fits the real perfectly, which accounts for that neural network model for terminative tempera- ture based on grey theory can reflect accurately the practice in dephosphorization. Naturally, this method is effective and nraeticahle.
基金Project supported in part by the National Natural Science Foundationof China (No. 60504024)the Specialized Research Fund for theDoctoral Program of Higher Education,China (No. 20060335022)+1 种基金theNatural Science Foundation of Zhejiang Province (No. Y106010),China the "151 Talent Project" of Zhejiang Province (Nos.05-3-1013 and 06-2-034),China
文摘This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
基金the National Natural Science Foundation of China (No. 60504024)the Research Project of Zhejiang Provin-cial Education Department (No. 20050905), China
文摘The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.