期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction 被引量:4
1
作者 Jianjun Li Dong Li +3 位作者 Xiuli Ju Qing Shi Dakun Wang Fengcai Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2663-2672,共10页
The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilic... The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tujl, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities. 展开更多
关键词 umbilical cord mesenchymal stem cell IMMUNOMODULATION oxidative stress neural induction neural regeneration
暂未订购
Junctional communication of embryonic cells after induction
2
作者 Zeng Mibai (Tseng Mipai) and Jiang Wansu Shanghai Institute of Cell Biology, Academia Sinica 《Cell Research》 SCIE CAS CSCD 1990年第1期67-75,共9页
Cell couplings before and after neural induction in embryos of Cynops orientalis were studied by means of single cell injection of Lucifer Yellow.Differences both in incidence and the extent of cell couplings were dem... Cell couplings before and after neural induction in embryos of Cynops orientalis were studied by means of single cell injection of Lucifer Yellow.Differences both in incidence and the extent of cell couplings were demonstrated.Results of cell couplings were correlated with electron microscopic observations of freeze-etching replicas. 展开更多
关键词 cell communication gap junction neural induction.
在线阅读 下载PDF
Neurogenic Differentiation of Murine Adipose Derived Stem Cells Transfected with EGFP in vitro 被引量:1
3
作者 方忠 杨琴 +5 位作者 熊伟 李光辉 肖骏 郭风劲 李锋 陈安民 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第1期75-80,共6页
Some studies indicate that adipose derived stem cells(ADSCs)can differentiate into adipogenic,chondrogenic,myogenic,and osteogenic cells in vitro.However,whether ADSCs can be induced to differentiate into neural cells... Some studies indicate that adipose derived stem cells(ADSCs)can differentiate into adipogenic,chondrogenic,myogenic,and osteogenic cells in vitro.However,whether ADSCs can be induced to differentiate into neural cells in vitro has not been clearly demonstrated.In this study,the ADSCs isolated from the murine adipose tissue were cultured and transfected with the EGFP gene,and then the cells were induced for neural differentiation.The morphology of those ADSCs began to change within two days which developed i... 展开更多
关键词 adipose derived stem cells enhanced green fluorescent protein neural induction spinal cord injury
暂未订购
Review: Neuronal Differentiation Protocols of Mesenchymal Stem Cells
4
作者 Miguel A. Jiménez-Acosta Lory Jhenifer Rochín Hernández +2 位作者 Mayte Lizeth Padilla Cristerna José Tapia-Ramírez Marco A. Meraz-Ríos 《Advances in Bioscience and Biotechnology》 2022年第1期15-71,共57页
Mesenchymal stem cells (MSCs) are self-renewing cells found in almost all <span>postnatal organs and tissues in the perivascular region. These cells present</span> multiple characteristics that make them c... Mesenchymal stem cells (MSCs) are self-renewing cells found in almost all <span>postnatal organs and tissues in the perivascular region. These cells present</span> multiple characteristics that make them candidates to be applied in cell therapy for neurodegenerative diseases, such as their secretory action, migration to the lesion area, and immunomodulatory potential. These cells have a high <span>capacity for mesodermal differentiation;however, numerous studies have</span> shown that MSCs can also differentiate into neurons. However, despite posi<span>tive results in multiple trials in which undifferentiated MSCs transplanted</span> into animal models of neurodegenerative diseases, some studies suggest that the therapeutic effects obtained are enhanced by the use of MSCs differentiated towards the neuronal lineage before transplant. In this sense, there are <span>several methods to induce <i>in vitro</i> reprogramming of MSCs towards the</span> neuronal lineage, including chemical substances, growth factors, cocultures with neural lineage cells, transfection of genes, miRNAs, etc., and small molecules <span>stand out. Therefore, this article compares multiple experimental tests in </span>which these inducers promote neuronal differentiation of MSCs and identify those methods that originate an optimal neuronal differentiation. The analysis includes the percentage of differentiation, maturation, expression of neuronal markers, functionality, and cell survival considering the intrinsic characteristics of the MSCs used as the tissue of origin and the species from which they were isolated. 展开更多
关键词 Mesenchymal Stem Cells Transdifferentiating Neuronal Differentiation Small Molecules MIRNA neural induction
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部