设Hill算子L=-α~2+u(x)具有周期有限带位势u(x)。众所周知,与谱带左端点E_(2j)相应的特征函数ψ_j(x)满足著名的McKean-Trubowitz迹恒等式:sum from j=0 to N ψ_j^2(x)=1. 本文证明,谱带右端点E_(2j-1)相应的特征函数φ_j(x)满足另一...设Hill算子L=-α~2+u(x)具有周期有限带位势u(x)。众所周知,与谱带左端点E_(2j)相应的特征函数ψ_j(x)满足著名的McKean-Trubowitz迹恒等式:sum from j=0 to N ψ_j^2(x)=1. 本文证明,谱带右端点E_(2j-1)相应的特征函数φ_j(x)满足另一个迹恒等式:u(x)=-2 sum from j=1 to N φ_j(x)+σ,其中σ=E_0+ sum from j=1 to N(E_(2j)-E_(2j-1). ψ_j与φ_j满足的Hill方程组分别被此二个迹公式非线性化为两个Liouville意义下的完全可积系统:Neumann系统与Bargmamm系统。展开更多
The first non-zero eigenvalue is the leading term in the spectrum of a self-adjoint operator. It plays a critical role in various applications and is treated in a large number of textbooks. There is a well-known varia...The first non-zero eigenvalue is the leading term in the spectrum of a self-adjoint operator. It plays a critical role in various applications and is treated in a large number of textbooks. There is a well-known variational formula for it (called the Min-Max Principle) which is especially effective for an upper bound of the eigenvalue. However, for the lower bound of the spectral gap, some dual variational formulas have been obtained only very recently. The original proofs are probabilistic. Some analytic proofs in one-dimensional case are proposed and certain extension is made.展开更多
文摘设Hill算子L=-α~2+u(x)具有周期有限带位势u(x)。众所周知,与谱带左端点E_(2j)相应的特征函数ψ_j(x)满足著名的McKean-Trubowitz迹恒等式:sum from j=0 to N ψ_j^2(x)=1. 本文证明,谱带右端点E_(2j-1)相应的特征函数φ_j(x)满足另一个迹恒等式:u(x)=-2 sum from j=1 to N φ_j(x)+σ,其中σ=E_0+ sum from j=1 to N(E_(2j)-E_(2j-1). ψ_j与φ_j满足的Hill方程组分别被此二个迹公式非线性化为两个Liouville意义下的完全可积系统:Neumann系统与Bargmamm系统。
基金Project supported in part by the National Natural Science Foundation of China (Grant No. 19631060)Qiu Shi Science & Technology Foundation, DPFIHE, MCSEC and MCMCAS.
文摘The first non-zero eigenvalue is the leading term in the spectrum of a self-adjoint operator. It plays a critical role in various applications and is treated in a large number of textbooks. There is a well-known variational formula for it (called the Min-Max Principle) which is especially effective for an upper bound of the eigenvalue. However, for the lower bound of the spectral gap, some dual variational formulas have been obtained only very recently. The original proofs are probabilistic. Some analytic proofs in one-dimensional case are proposed and certain extension is made.