期刊文献+
共找到551,659篇文章
< 1 2 250 >
每页显示 20 50 100
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
1
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
基于CNN-LSTM方法的液环泵非稳态流场预测分析
2
作者 张人会 唐玉 +1 位作者 郭广强 陈学炳 《农业机械学报》 北大核心 2026年第1期273-279,共7页
为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,... 为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,利用卷积神经网络(CNN)对流场快照进行特征提取,并结合长短期记忆神经网络(LSTM)构建时间序列神经网络预测模型,预测结果与CFD数值模拟结果进行对比,分析表明,CNN-LSTM模型能够实现对未来时刻非稳态流场的高精度预测;相态场、压力场、温度场的预测结果平均相对误差分别为1.37%、1.28%、1.78%;在利用LSTM预测壳体及进口压力脉动时,在样本集之后叶轮旋转360°时间上平均相对误差分别为1.61%、0.09%、0.20%。在样本空间外的预测集上,CNN-LSTM的预测性能优于本征正交分解(POD)方法,尽管在外延时间序列上的预测精度随时间增加逐渐下降,但在整个时间历程上保持了较好的预测精度,在预测内流场结果方面具有显著优势。 展开更多
关键词 液环泵 非稳态流场 卷积神经网络 长短期记忆神经网络
在线阅读 下载PDF
融合注意力增强CNN与Transformer的电网关键节点识别
3
作者 黎海涛 乔禄 +2 位作者 杨艳红 谢冬雪 高文浩 《北京工业大学学报》 北大核心 2026年第2期117-129,共13页
为了精确识别电网关键节点以保障电力系统的可靠运行,提出一种基于融合拓扑特征与电气特征的双重自注意力卷积神经网络(convolutional neural network,CNN)的电网关键节点识别方法。首先,构建包含节点的局部拓扑特征、半局部拓扑特征、... 为了精确识别电网关键节点以保障电力系统的可靠运行,提出一种基于融合拓扑特征与电气特征的双重自注意力卷积神经网络(convolutional neural network,CNN)的电网关键节点识别方法。首先,构建包含节点的局部拓扑特征、半局部拓扑特征、电气距离及节点电压的多维特征集;然后,利用压缩-激励(squeeze-and-excitation,SE)自注意力机制改进CNN以增强对节点特征的提取能力,并引入多头自注意力的Transformer编码器以实现拓扑特征与电气特征的深度融合。结果表明:在IEEE 30节点和IEEE 118节点的标准测试系统上,该方法识别关键节点的准确性更高,并且在节点影响力评估和网络鲁棒性方面,得到的电网关键节点对网络的影响更大,鲁棒性更好,为电网的安全稳定运行提供了有效的决策支持。 展开更多
关键词 复杂网络 电网 关键节点识别 卷积神经网络(convolutional neural network cnn) 注意力 特征融合
在线阅读 下载PDF
基于CNN-BiLSTM-SSA的锅炉再热器壁温预测模型
4
作者 徐世明 何至谦 +6 位作者 彭献永 商忠宝 范景玮 王俊略 曲舒杨 刘洋 周怀春 《动力工程学报》 北大核心 2026年第1期121-130,共10页
针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成... 针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成分变量作为模型的最终输入。其次,考虑利用CNN捕捉局部相关性,BiLSTM学习数据的长期序列依赖性的优势,使用卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)捕捉时序数据中的短期和长期依赖关系,引入稀疏自注意力SSA机制,通过为不同特征部分分配自适应权重,从而增强CNN-BiLSTM模型的特征提取与建模能力,最后利用在役1000 MW超超临界锅炉的历史数据进行仿真实验。结果表明:CNN-BiLSTM-SSA模型在高温再热器壁温预测中的均方根误差(RMSE)、平均绝对误差(MAE)及平均绝对百分比误差(MAPE)分别为4.92℃、3.81℃和0.6241%,相应的指标均优于CNN、LSTM、BiLSTM、CNN-LSTM和CNN-BiLSTM模型。 展开更多
关键词 再热器壁温软测量 深度学习 卷积神经网络 长短期记忆网络 注意力机制 核主成分分析 cnn-BiLSTM
在线阅读 下载PDF
Development and application of an intelligent thermal state monitoring system for sintering machine tails based on CNN-LSTM hybrid neural networks 被引量:1
5
作者 Da-lin Xiong Xin-yu Zhang +3 位作者 Zheng-wei Yu Xue-feng Zhang Hong-ming Long Liang-jun Chen 《Journal of Iron and Steel Research International》 2025年第1期52-63,共12页
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv... Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects. 展开更多
关键词 Sinter quality Convolutional neural network Long short-term memory Image segmentation FeO prediction
原文传递
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
6
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
面向可重构结构的CNN模型混合压缩方法
7
作者 刘朋飞 蒋林 +1 位作者 李远成 吴海 《现代电子技术》 北大核心 2026年第1期167-173,共7页
随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波... 随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波器剪枝、基于阈值的全连接层权值剪枝和混合精度自适应量化策略,来减少模型参数量和计算复杂度,并部署在自研的可重构处理器上。实验结果表明,所提方法在VGG16和ResNet18模型上分别实现了31.4倍和7.9倍的压缩比,精度仅下降1.20%和0.74%。在基于VirtexUltraScale VU440 FPGA开发板搭建的可重构阵列处理器上,压缩后的VGG16模型执行周期最大降低了62.7%。证明所提方法适合资源有限的边缘计算设备。 展开更多
关键词 卷积神经网络 模型压缩 结构化剪枝 自适应量化 并行计算 可重构结构
在线阅读 下载PDF
基于CNN二维和三维图像特征融合的路面裂缝分割研究
8
作者 邱欣 张霆锋 +1 位作者 陶珏强 梁毅 《浙江师范大学学报(自然科学版)》 2026年第1期33-44,共12页
精准的路面病害检测是开展高效路面养护管理的必要前提.针对现有路面病害检测方法存在精度不足、易受噪声干扰等问题,提出一种基于二维灰度图像与三维深度图像特征融合的卷积神经网络路面病害检测方法.首先依托线结构光路面信息采集系统... 精准的路面病害检测是开展高效路面养护管理的必要前提.针对现有路面病害检测方法存在精度不足、易受噪声干扰等问题,提出一种基于二维灰度图像与三维深度图像特征融合的卷积神经网络路面病害检测方法.首先依托线结构光路面信息采集系统,同步获取灰度图像与深度图像数据,并完成数据预处理与标注;继而结合图像数据特性,设计2种基于Res2Net架构的网络模型——双通道模型与双编码器模型,并在模型中嵌入注意力机制模块以优化裂缝分割的类别不平衡问题;最后针对不同类型路面病害开展定量分析.实验结果表明,多模态图像(灰度+深度)融合模型可使检测精度显著提升,平均交并比(MIoU)较基准提升了5.48%,达到82.96%,为道路养护的工程应用提供了参考. 展开更多
关键词 卷积神经网络 多模态 路面裂缝检测 图像分割
在线阅读 下载PDF
基于改进CNN的煤矿掘进工作面超前探测异常体识别方法
9
作者 原野 《煤矿现代化》 2026年第1期162-165,共4页
煤矿掘进工作面超前探测中,异常体识别的探测技术存在局限性,导致精度不足。传统的探测方法,如某些物理探测手段,受巷道空间的限制,其探测范围和精度相对有限。在处理复杂地质条件时,无法准确识别异常体的位置和形态。为此,开展基于改... 煤矿掘进工作面超前探测中,异常体识别的探测技术存在局限性,导致精度不足。传统的探测方法,如某些物理探测手段,受巷道空间的限制,其探测范围和精度相对有限。在处理复杂地质条件时,无法准确识别异常体的位置和形态。为此,开展基于改进卷积神经网络(CNN)的识别方法研究。通过预处理声波远距离超前物探数据,包括去噪、增强和归一化等步骤,提升数据质量。利用基于改进CNN的模型对探测图像进行异常体特征提取,该模型通过优化卷积层、引入注意力机制和调整超参数,有效提高了特征提取的准确性和鲁棒性。最后,基于提取的特征向量,采用SVM分类器实现异常体的识别分类。通过对比实验证明,该方法相较于现有方法在异常体识别准确率和效率有显著提升。 展开更多
关键词 改进cnn 掘进 超前探测 异常体识别
在线阅读 下载PDF
基于CNN与格栅优化的输变电工程造价趋势预测研究
10
作者 孙永彦 丁艳 +1 位作者 叶慧男 王天佑 《粘接》 2026年第2期552-555,共4页
设计要求的严格与多变常导致工程造价的增加,进而使评价指标不稳定。为此,提出采用卷积神经网络(Convolutional Neural Network,CNN)与格栅优化的输变电工程造价趋势预测方法。首先,利用数学方法估算输变电工程造价成本,并获取相应的造... 设计要求的严格与多变常导致工程造价的增加,进而使评价指标不稳定。为此,提出采用卷积神经网络(Convolutional Neural Network,CNN)与格栅优化的输变电工程造价趋势预测方法。首先,利用数学方法估算输变电工程造价成本,并获取相应的造价数据,对原始造价数据进行标准化处理,选取施工造价的预测评价指标,利用熵权法筛选特征,随后计算施工造价指标的特征相似度,构建神经网络预测模型,并引入均方误差(MSE)作为损失函数进行训练,从而建立了输变电工程造价预测模型。基于CNN特征提取与格栅优化算法计算关联度,以预测输变电工程造价趋势,最后,采用均值强化算法对造价数据进行平均化处理,所得平均值即为最终的工程造价预测值。 展开更多
关键词 输变电工程 造价预测 cnn 格栅优化 特征提取
在线阅读 下载PDF
基于多维故障特征提取的CNN-BiGRU-ATT多分支配电网故障定位
11
作者 张玉敏 王德龙 +4 位作者 张晓 吉兴全 张祥星 黄心月 王学林 《中国电力》 北大核心 2026年第1期163-174,共12页
针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention m... 针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention mechanism,ATT)多分支配电网故障定位方法。首先,分析不同故障位置和故障分支的行波特性,采用基于直线检测(line segment detector,LSD)的波头标定方法提取故障波头的坐标、幅值和斜率等信息,利用主成分分析法(principal component analysis,PCA)构造与故障位置成映射关系的多维故障特征空间;其次,构建CNN-BiGRU-ATT故障定位模型,深入挖掘时序特征和幅值特征与故障位置之间的关联;最后,结合分类与回归任务,分别实现故障区段定位与精准定位。在有限样本的情况下,区段定位准确率达99.6429%,精准定位误差55.77 m,跨工况误差最低2.95 m。结果表明,该模型能有效关联多维故障特征与故障信息,较对比模型具有更优的故障定位精度稳定性与场景泛化能力。 展开更多
关键词 故障定位 多分支配电网 LSD 多维故障特征 cnn-BiGRU-ATT
在线阅读 下载PDF
基于自适应融合CNN—OF特征和LSTM网络的猪攻击行为识别
12
作者 陈晨 孙博 +3 位作者 Juan Steibel Janice Siegford 韩俊杰 Tomas Norton 《中国农机化学报》 北大核心 2026年第2期275-282,共8页
为识别群养猪攻击行为,提出一种基于自适应融合CNN—OF特征和LSTM网络的算法。在两个猪栏中每栏混养8头猪3天,每天收集8 h的视频作为数据集。从猪栏1的3天视频中标记出1200个攻击1 s片段和1200个非攻击1 s片段,选择80%的片段作为训练集... 为识别群养猪攻击行为,提出一种基于自适应融合CNN—OF特征和LSTM网络的算法。在两个猪栏中每栏混养8头猪3天,每天收集8 h的视频作为数据集。从猪栏1的3天视频中标记出1200个攻击1 s片段和1200个非攻击1 s片段,选择80%的片段作为训练集,其余20%作为验证集。从猪栏2的3天视频中标记出1254个攻击1 s片段和85146个非攻击1 s片段作为测试集。首先,采用Horn—Schunck(HS)方法计算光流(OF)的大小和方向角,并根据CNN特征图的维度划分光流方向角的范围。然后,在每个方向角范围内统计光流大小的直方图,通过空间维度变换将直方图转化为特征图。最后,通过权重叠加将此特征图与CNN特征图进行自适应融合并输入LSTM网络以识别攻击。采用VGG16—OF—LSTM、ResNet50—OF—LSTM、InceptionV3—OF—LSTM和Xception—OF—LSTM算法识别猪攻击行为的准确率分别为97.5%、97.8%、98.7%、99.3%。结果表明,CNN—OF—SLTM算法能够识别猪攻击行为。提出的自适应特征融合方法CNN—OF具有一定通用性。 展开更多
关键词 群养猪 攻击识别 卷积神经网络 光流 自适应融合 长短期记忆
在线阅读 下载PDF
基于改进CNN-LSTM模型利用水下噪声估计海面风速
13
作者 刘雪枫 李琪 +2 位作者 唐锐 尚大晶 夏峙 《声学学报》 北大核心 2026年第1期287-297,共11页
提出一种将风成噪声特征与改进卷积神经网络-长短期记忆网络(CNN-LSTM)模型相结合估计海面风速的方法。首先,通过数据预处理计算噪声的能量谱级,以反映真实噪声强度变化;其次,利用能量谱级计算能量相关矩阵,找到风成噪声特征进行判断并... 提出一种将风成噪声特征与改进卷积神经网络-长短期记忆网络(CNN-LSTM)模型相结合估计海面风速的方法。首先,通过数据预处理计算噪声的能量谱级,以反映真实噪声强度变化;其次,利用能量谱级计算能量相关矩阵,找到风成噪声特征进行判断并作为特征向量输入;在此基础上,结合卷积神经网络获取特征以及长短期记忆网络学习时序信息的特点,建立了基于多特征的反演模型对风速进行估计。南海海上实验结果表明,所提模型风速估计的均方根误差小于0.3,与实际风速序列的相关系数高于0.97,吻合效果较好,各项评价指标均明显优于长短期记忆网络模型。 展开更多
关键词 海洋环境噪声 卷积神经网络 长短期记忆网格 风速估计
原文传递
Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks
14
作者 Zeeshan Ali Haider Inam Ullah +2 位作者 Ahmad Abu Shareha Rashid Nasimov Sufyan Ali Memon 《Computers, Materials & Continua》 2026年第1期534-549,共16页
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener... The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment. 展开更多
关键词 6G networks UAV-based communication cooperative reinforcement learning network optimization user connectivity energy efficiency
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
15
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks UAV traffic offloading reinforcement learning
在线阅读 下载PDF
A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection
16
作者 Zheng Zhang Jie Hao +2 位作者 Liquan Chen Tianhao Hou Yanan Liu 《Computers, Materials & Continua》 2026年第1期1119-1140,共22页
With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion det... With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion detection models,this paper proposes a Dual-Attention model for NID,which combines Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)to design two modules:the FocusConV and the TempoNet module.The FocusConV module,which automatically adjusts and weights CNN extracted local features,focuses on local features that are more important for intrusion detection.The TempoNet module focuses on global information,identifies more important features in time steps or sequences,and filters and weights the information globally to further improve the accuracy and robustness of NID.Meanwhile,in order to solve the class imbalance problem in the dataset,the EQL v2 method is used to compute the class weights of each class and to use them in the loss computation,which optimizes the performance of the model on the class imbalance problem.Extensive experiments were conducted on the NSL-KDD,UNSW-NB15,and CIC-DDos2019 datasets,achieving average accuracy rates of 99.66%,87.47%,and 99.39%,respectively,demonstrating excellent detection accuracy and robustness.The model also improves the detection performance of minority classes in the datasets.On the UNSW-NB15 dataset,the detection rates for Analysis,Exploits,and Shellcode attacks increased by 7%,7%,and 10%,respectively,demonstrating the Dual-Attention CNN-BiLSTM model’s excellent performance in NID. 展开更多
关键词 Network intrusion detection class imbalance problem deep learning
在线阅读 下载PDF
P4LoF: Scheduling Loop-Free Multi-Flow Updates in Programmable Networks
17
作者 Jiqiang Xia Qi Zhan +2 位作者 Le Tian Yuxiang Hu Jianhua Peng 《Computers, Materials & Continua》 2026年第1期1236-1254,共19页
The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.H... The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency. 展开更多
关键词 Network management update consistency programmable data plane P4
在线阅读 下载PDF
Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks
18
作者 Asal Jameel Khudhair Amenah Dahim Abbood 《Computers, Materials & Continua》 2026年第1期1453-1483,共31页
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r... Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification. 展开更多
关键词 Multi-objective optimization evolutionary algorithms community detection HEURISTIC METAHEURISTIC hybrid social network MODELS
在线阅读 下载PDF
Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios
19
作者 Yong Li Yuxuan Chen +4 位作者 Jiahui He Guowei He Chenxi Dai Jingjing Tong Wenting Lei 《Energy Engineering》 2026年第1期204-220,共17页
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the... Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study. 展开更多
关键词 Urban distribution network virtual power plant power supply support leader-follower optimization game extreme weather scenarios
在线阅读 下载PDF
基于改进Faster R—CNN的水稻秧苗漏插识别研究
20
作者 邹立雯 梁春英 +2 位作者 胡军 陈玉恒 李圳鹏 《中国农机化学报》 北大核心 2026年第2期101-107,共7页
水稻是我国的主要粮食作物,实现水稻的高产优产是必然趋势。针对传统人工补苗效率低、主观性高的问题,提出一种基于改进Faster R—CNN的水稻秧苗漏插识别方法。以Faster R—CNN模型为基础,将主干网络替换为残差网络ResNet50,结合FPN特... 水稻是我国的主要粮食作物,实现水稻的高产优产是必然趋势。针对传统人工补苗效率低、主观性高的问题,提出一种基于改进Faster R—CNN的水稻秧苗漏插识别方法。以Faster R—CNN模型为基础,将主干网络替换为残差网络ResNet50,结合FPN特征金字塔对特征信息进行提取;引入RoI Align双线性插值的思想替代RoI Pooling层粗糙量化操作。结果表明,改进后的Faster R—CNN模型识别的精确率为93.62%,平均精度均值mAP@0.5为95.06%;与未改进的模型相比,识别精确率提高7.33%,模型的平均精度均值mAP@0.5提高4.6%。该模型可以提高水稻秧苗的分类和插秧机漏插位置的检测精度,为制定水稻秧苗补苗计划打下坚实的基础,并为评价水稻插秧机质量提供数据支持。 展开更多
关键词 水稻秧苗 漏插识别 特征金字塔 深度学习 残差网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部