期刊文献+
共找到497篇文章
< 1 2 25 >
每页显示 20 50 100
H-infinity performance optimization for networked control systems with limited communication channels 被引量:3
1
作者 Yulong WANG Guanghong YANG 《控制理论与应用(英文版)》 EI 2010年第1期99-104,共6页
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu... This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels. 展开更多
关键词 networked control systems (NCSs) Limited communication channels Performance optimization controller design
在线阅读 下载PDF
Fault detection and optimization for networked control systems with uncertain time-varying delay 被引量:2
2
作者 Qing Wang Zhaolei Wang +1 位作者 Chaoyang Dong Erzhuo Niu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期544-556,共13页
The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are model... The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach. 展开更多
关键词 fault detection networked control systems residual generator time-varying delay time domain optimization approach.
在线阅读 下载PDF
Analysis and optimization of delays in networked control systems
3
作者 谢林柏 方华京 郑英 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期654-659,664,共7页
The minimization problem of time delays in networked control system (NCS) is concered, which is a hot area of such research field. First, some analysis and comments on time-delayed NCS model listed in previous work ... The minimization problem of time delays in networked control system (NCS) is concered, which is a hot area of such research field. First, some analysis and comments on time-delayed NCS model listed in previous work are given. Then, time delay minimization problem based on average behavior of network queuing delay is presented. Under fixed routing scheme and certain optimization performance indexes, the delay minimization problem is translated into convex optimization problem. And the solution of the delay minimization problems is attained through optimized allocation of flow rates among network links. 展开更多
关键词 networked control system time delays convex optimization subgradient method.
在线阅读 下载PDF
A Novel Approach to Design Robust Fault Detection Filter for Networked Control Systems
4
作者 马力伟 田作华 施颂椒 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第3期310-315,共6页
In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustnes... In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustness of unknown inputs (including the item produced by networked-induced delay) and sensitivity of fault. The key design issue is to introduce an optimal fault detection filter based on NCSs with the control law compensation as the reference residual model of NCSs and to formulate the RFDF design as a model-matching problem. By applying H∞ optimization technique, linear matrix inequality (LMI) approach is given to solve the model-matching problem. The validity of the proposed approach is shown by a numerical example. 展开更多
关键词 networked control systems (NCSs) robust fault detection filter (RFDF) model-matching H∞ optimization linear matrix inequality (LMI)
原文传递
A Control Scheme Based on Online Delay Evaluation for a Class of Networked Control Systems 被引量:1
5
作者 马向华 谢剑英 魏震 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期124-130,共7页
A control scheme that integrates control technology with communication technology to solve the delay problem is introduced for a class of networked control systems: Networked Half-Link Systems (NHLS). Concretely, we u... A control scheme that integrates control technology with communication technology to solve the delay problem is introduced for a class of networked control systems: Networked Half-Link Systems (NHLS). Concretely, we use the master-slave clock synchronization technology to evaluate the delays online, and then the LQ optimal control based on delays is adopted to stabilize the controlled plant. During the clock synchronization process, the error of evaluated delays is inevitably induced from the clock synchronization error, which will deteriorate the system performances, and even make system unstable in certain cases. Hence, the discussions about the clock error, and the related control analysis and design are also developed. Specifically, we present the sufficient conditions of controller parameters that guarantee the system stability, and a controller design method based on the error of delays is addressed thereafter. The experiments based on a CANbus platform are fulfilled, and the experimental results verify the previous analytic results finally. 展开更多
关键词 networked control systems NCS networked Half-Link systems NHLS Clock Synchronization Optimal control Based on Delays CANbus.
在线阅读 下载PDF
An Optimal Hybrid Learning Approach for Attack Detection in Linear Networked Control Systems 被引量:2
6
作者 Haifeng Niu Avimanyu Sahoo +1 位作者 Chandreyee Bhowmick S·Jagannathan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1404-1416,共13页
A novel learning-based attack detection and estimation scheme is proposed for linear networked control systems(NCS),wherein the attacks on the communication network in the feedback loop are expected to increase networ... A novel learning-based attack detection and estimation scheme is proposed for linear networked control systems(NCS),wherein the attacks on the communication network in the feedback loop are expected to increase network induced delays and packet losses,thus changing the physical system dynamics.First,the network traffic flow is modeled as a linear system with uncertain state matrix and an optimal Q-learning based control scheme over finite-horizon is utilized to stabilize the flow.Next,an adaptive observer is proposed to generate the detection residual,which is subsequently used to determine the onset of an attack when it exceeds a predefined threshold,followed by an estimation scheme for the signal injected by the attacker.A stochastic linear system after incorporating network-induced random delays and packet losses is considered as the uncertain physical system dynamics.The attack detection scheme at the physical system uses the magnitude of the state vector to detect attacks both on the sensor and the actuator.The maximum tolerable delay that the physical system can tolerate due to networked induced delays and packet losses is also derived.Simulations have been performed to demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 ATTACK detection ATTACK estimation event-triggered control Lyapunov stability networked control system(NCS) OPTIMAL control Q-LEARNING
在线阅读 下载PDF
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
7
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance optimization present upper bound Nonlinear systems NOISES Constrained networked Predictive control High Order Fully Actuated systems
在线阅读 下载PDF
STUDY ON THE OPTIMIZATION OF TRANSPORT CONTROL POLICY IN COMMUNICATION NETWORK 被引量:1
8
作者 Fan Shuyan Han Weizhan Lu Ran 《Journal of Electronics(China)》 2010年第2期261-266,共6页
In communication networks with policy-based Transport Control on-Demand (TCoD) function,the transport control policies play a great impact on the network effectiveness. To evaluate and optimize the transport policies ... In communication networks with policy-based Transport Control on-Demand (TCoD) function,the transport control policies play a great impact on the network effectiveness. To evaluate and optimize the transport policies in communication network,a policy-based TCoD network model is given and a comprehensive evaluation index system of the network effectiveness is put forward from both network application and handling mechanism perspectives. A TCoD network prototype system based on Asynchronous Transfer Mode/Multi-Protocol Label Switching (ATM/MPLS) is introduced and some experiments are performed on it. The prototype system is evaluated and analyzed with the comprehensive evaluation index system. The results show that the index system can be used to judge whether the communication network can meet the application requirements or not,and can provide references for the optimization of the transport policies so as to improve the communication network effectiveness. 展开更多
关键词 Communication network Comprehensive evaluation index system Network Application Effectiveness (NAE) Transport control on-Demand (TCoD) Policy optimization
在线阅读 下载PDF
A global optimization algorithm based on multi-loop neural network control
9
作者 LU Baiquan NI Chenlong +1 位作者 ZHENG Zhongwei LIU Tingzhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期1007-1024,共18页
This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtai... This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 GLOBAL optimization NEURAL networks control system TRANSFORMATION FUNCTION FILLED FUNCTION method
在线阅读 下载PDF
Optimization Algorithms for Predictive Control Approach to Networked Bilinear Systems 被引量:3
10
作者 Binglin Wang Yu Kang +1 位作者 Jiahu Qin Yanmei Li 《自动化学报》 EI CSCD 北大核心 2017年第7期1234-1240,共7页
关键词 离散双线性系统 预测控制策略 逐步优化算法 网络化 系统动力学模型 控制序列 反馈通道 通信延迟
在线阅读 下载PDF
Semantic model and optimization of creative processes at mathematical knowledge formation
11
作者 Victor Egorovitch Firstov 《Natural Science》 2010年第8期915-922,共8页
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ... The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications. 展开更多
关键词 The Cybernetic Conception optimization of control Quantitative And Qualitative Information Measures Modelling Intellectual systems Neural Network MATHEMATICAL Education The control of Pedagogical PROCESSES CREATIVE Pedagogics Cognitive And CREATIVE PROCESSES Informal Axiomatic Thery SEMANTIC NET NET optimization Parameters The Topology of SEMANTIC NET Metrization The System of Coverings Stochastic Model of CREATIVE PROCESSES At The Formation of MATHEMATICAL Knowledge Branching Markovian Process Great Main Points Strategy (GMP-Strategy) of The CREATIVE PROCESSES control Interdisciplinary Learning: Colorimetric Barycenter
在线阅读 下载PDF
Observer-based Adaptive Optimal Control for Unknown Singularly Perturbed Nonlinear Systems With Input Constraints 被引量:7
12
作者 Zhijun Fu Wenfang Xie +1 位作者 Subhash Rakheja Jing Na 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期48-57,共10页
This paper introduces an observer-based adaptive optimal control method for unknown singularly perturbed nonlinear systems with input constraints. First, a multi-Time scales dynamic neural network MTSDNN observer with... This paper introduces an observer-based adaptive optimal control method for unknown singularly perturbed nonlinear systems with input constraints. First, a multi-Time scales dynamic neural network MTSDNN observer with a novel updating law derived from a properly designed Lyapunov function is proposed to estimate the system states. Then, an adaptive learning rule driven by the critic NN weight error is presented for the critic NN, which is used to approximate the optimal cost function. Finally, the optimal control action is calculated by online solving the Hamilton-Jacobi-Bellman HJB equation associated with the MTSDNN observer and critic NN. The stability of the overall closed-loop system consisting of the MTSDNN observer, the critic NN and the optimal control action is proved. The proposed observer-based optimal control approach has an essential advantage that the system dynamics are not needed for implementation, and only the measured input U+002F output data is needed. Moreover, the proposed optimal control design takes the input constraints into consideration and thus can overcome the restriction of actuator saturation. Simulation results are presented to confirm the validity of the investigated approach. © 2014 Chinese Association of Automation. 展开更多
关键词 Closed loop systems Cost functions Lyapunov functions Neural networks Nonlinear systems Optimal control systems Perturbation techniques
在线阅读 下载PDF
Optimal distributed resource allocation in a wireless sensor network for control systems 被引量:7
13
作者 MAO Jian-lin WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第1期106-112,共7页
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of... Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes. 展开更多
关键词 Wireless sensor networks (WSN) Distributed resource allocation control systems optimization.
在线阅读 下载PDF
Optimal Neuro-Control Strategy for Nonlinear Systems With Asymmetric Input Constraints 被引量:6
14
作者 Xiong Yang Bo Zhao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期575-583,共9页
In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in ord... In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples. 展开更多
关键词 Adaptive critic designs(ACDs) asymmetric input constraint critic neural network(CNN) nonlinear systems optimal control reinforcement learning(RL)
在线阅读 下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:11
15
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
在线阅读 下载PDF
An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming 被引量:17
16
作者 WEI Qing-Lai ZHANG Hua-Guang +1 位作者 LIU De-Rong ZHAO Yan 《自动化学报》 EI CSCD 北大核心 2010年第1期121-129,共9页
关键词 非线性系统 最优控制 控制变量 动态规划
在线阅读 下载PDF
Data-based Optimal Control for Discrete-time Zero-sum Games of 2-D Systems Using Adaptive Critic Designs 被引量:8
17
作者 WEI Qing-Lai ZHANG Hua-Guang CUI Li-Li 《自动化学报》 EI CSCD 北大核心 2009年第6期682-692,共11页
关键词 自适应系统 最优控制 离散时间 自动化系统
在线阅读 下载PDF
A neuro-observer-based optimal control for nonaffine nonlinear systems with control input saturations
18
作者 Behzad Farzanegan Mohsen Zamani +1 位作者 Amir Abolfazl Suratgar Mohammad Bagher Menhaj 《Control Theory and Technology》 EI CSCD 2021年第2期283-294,共12页
In this study,an adaptive neuro-observer-based optimal control(ANOPC)policy is introduced for unknown nonaffine nonlinear systems with control input constraints.Hamilton–Jacobi–Bellman(HJB)framework is employed to m... In this study,an adaptive neuro-observer-based optimal control(ANOPC)policy is introduced for unknown nonaffine nonlinear systems with control input constraints.Hamilton–Jacobi–Bellman(HJB)framework is employed to minimize a non-quadratic cost function corresponding to the constrained control input.ANOPC consists of both analytical and algebraic parts.In the analytical part,first,an observer-based neural network(NN)approximates uncertain system dynamics,and then another NN structure solves the HJB equation.In the algebraic part,the optimal control input that does not exceed the saturation bounds is generated.The weights of two NNs associated with observer and controller are simultaneously updated in an online manner.The ultimately uniformly boundedness(UUB)of all signals of the whole closed-loop system is ensured through Lyapunov’s direct method.Finally,two numerical examples are provided to confirm the effectiveness of the proposed control strategy. 展开更多
关键词 Input constraints Optimal control Neural networks Nonaffine nonlinear systems Reinforcement learning Unknown dynamics
原文传递
基于自适应时域MPC的无人车轨迹跟踪控制 被引量:1
19
作者 丁承君 耿宇坤 +2 位作者 胡健鑫 王逸桐 王镇林 《科学技术与工程》 北大核心 2025年第23期9883-9891,共9页
为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒... 为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒子群优化算法(particle swarm optimization,PSO)对时域参数优化,获得不同工况下的离线最优时域数据集。然后,利用自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS)对数据集训练,得到能够自适应调整时域的控制系统。最后,通过Carsim和Simulink联合仿真和实车验证。结果表明:自适应时域MPC控制器在不同工况下的轨迹跟踪精度和稳定性均得到了较大幅度的提高,且该算法具有较好的实用性。 展开更多
关键词 模型预测控制 轨迹跟踪 粒子群优化算法(PSO) 自适应神经模糊推理系统(ANFIS)
在线阅读 下载PDF
欠约束临时支护机器人几何静力耦合模型及运动控制研究
20
作者 刘鹏 朱延 +6 位作者 马宏伟 曹现刚 张旭辉 段学超 周昊晨 乔心州 夏晶 《煤炭科学技术》 北大核心 2025年第8期346-361,共16页
护盾式智能掘进机器人系统有效的解决了煤矿开采中“采掘失衡、采快掘慢”难题。临时支护机器人作为该系统的重要组成部分,尽管在提升作业效率上发挥了重要作用,但由于结构限制,仅能实现竖直方向的升降运动,难以有效应对复杂巷道的临时... 护盾式智能掘进机器人系统有效的解决了煤矿开采中“采掘失衡、采快掘慢”难题。临时支护机器人作为该系统的重要组成部分,尽管在提升作业效率上发挥了重要作用,但由于结构限制,仅能实现竖直方向的升降运动,难以有效应对复杂巷道的临时支护作业。为解决临时支护机器人运动受限难题,设计了一种欠约束临时支护机器人,并提出了一种基于RBF神经网络分块逼近的终端滑模控制方法,以实现欠约束临时支护机器人的高精度运动控制。首先,利用修正的G-K公式对该机器人的自由度进行了分析,针对欠约束临时支护机器人正运动学难以求解问题,建立了几何静力耦合模型,提出了一种改进的蜣螂优化算法,对正/逆几何静力问题进行求解,并对几何静力问题进行了仿真;其次,设计了一种基于RBF神经网络分块逼近的终端滑模控制器。针对末端支护平台参数矩阵的不确定,使用多组RBF神经网络对其逼近,根据自适应律在线调整权值,实现了动力学模型的重构,并设计鲁棒项消除模型重构误差和外部扰动。为缓解控制器存在的抖振问题,设计了模糊系统自适应逼近切换增益来代替鲁棒项,并利用Lyapunov准则证明了控制系统的稳定性。最后,以平面圆轨迹为例进行仿真。结果表明:改进的蜣螂优化算法对正/逆运动学单点验证精度均小于10-20,连续运动学求解结果良好。使用RBF神经网络分块逼近的终端滑模控制方法对预定轨迹的位置跟踪误差为0~0.011m,姿态跟踪误差为0~0.0031°,与RBF神经网络整体逼近和PD控制相比最大跟踪误差分别减少了99.0%、95.5%,均方根误差分别减少了98.3%、96.5%。证明了基于RBF神经网络分块逼近的终端滑模控制方法能进一步提高欠约束临时支护机器人的运动控制精度,在受到外界干扰的情况下具有更强的鲁棒性。 展开更多
关键词 欠约束并联机器人 临时支护 运动控制 优化算法 神经网络 模糊系统
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部