期刊文献+
共找到42,903篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Hierarchical Task Network Planning through Ant Colony Optimization in Refinement Process
1
作者 Mohamed Elkawkagy Ibrahim A.Elgendy +2 位作者 Ammar Muthanna Reem Ibrahim Alkanhel Heba Elbeh 《Computers, Materials & Continua》 2025年第7期393-415,共23页
Hierarchical Task Network(HTN)planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures.However,achieving optimal solutions in HTN ... Hierarchical Task Network(HTN)planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures.However,achieving optimal solutions in HTN planning remains a challenge,especially in scenarios where traditional search algorithms struggle to navigate the vast solution space efficiently.This research proposes a novel technique to enhance HTN planning by integrating the Ant Colony Optimization(ACO)algorithm into the refinement process.The Ant System algorithm,inspired by the foraging behavior of ants,is well-suited for addressing optimization problems by efficiently exploring solution spaces.By incorporating ACO into the refinement phase of HTN planning,the authors aim to leverage its adaptive nature and decentralized decision-making to improve plan generation.This paper involves the development of a hybrid strategy called ACO-HTN,which combines HTN planning with ACO-based plan selection.This technique enables the system to adaptively refine plans by guiding the search towards optimal solutions.To evaluate the effectiveness of the proposed technique,this paper conducts empirical experiments on various domains and benchmark datasets.Our results demonstrate that the ACO-HTN strategy enhances the efficiency and effectiveness of HTN planning,outperforming traditional methods in terms of solution quality and computational performance. 展开更多
关键词 Hierarchical planning ant system optimization automated planning PANDA planner plan selection strategy
在线阅读 下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
2
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
Behavior of Spikes in Spiking Neural Network (SNN)Model with Bernoulli for Plant Disease on Leaves
3
作者 Urfa Gul M.Junaid Gul +1 位作者 Gyu Sang Choi Chang-Hyeon Park 《Computers, Materials & Continua》 2025年第8期3811-3834,共24页
Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neur... Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neural Networks(ANN).Unlike conventional ANNs,which process static images without fully capturing the inherent temporal dynamics,our approach represents the first implementation of SNNs tailored explicitly for agricultural disease classification,integrating an encoding method to convert static RGB plant images into temporally encoded spike trains.Additionally,while Bernoulli trials and standard deep learning architectures likeConvolutionalNeuralNetworks(CNNs)and Fully Connected Neural Networks(FCNNs)have been used extensively,our work is the first to integrate these trials within an SNN framework specifically for agricultural applications.This integration not only refines spike regulation and reduces computational overhead by 30%but also delivers superior accuracy(93.4%)in plant disease classification,marking a significant advancement in precision agriculture that has not been previously explored.Our approach uniquely transforms static plant leaf images into time-dependent representations,leveraging SNNs’intrinsic temporal processing capabilities.This approach aligns with the inherent ability of SNNs to capture dynamic,timedependent patterns,making them more suitable for detecting disease activations in plants than conventional ANNs that treat inputs as static entities.Unlike prior works,our hybrid encoding scheme dynamically adapts to pixel intensity variations(via threshold),enabling robust feature extraction under diverse agricultural conditions.The dual-stage preprocessing customizes the SNN’s behavior in two ways:the encoding threshold is derived from pixel distributions in diseased regions,and Bernoulli trials selectively reduce redundant spikes to ensure energy efficiency on low-power devices.We used a comprehensive dataset of 87,000 RGB images of plant leaves,which included 38 distinct classes of healthy and unhealthy leaves.To train and evaluate three distinct neural network architectures,DeepSNN,SimpleCNN,and SimpleFCNN,the dataset was rigorously preprocessed,including stochastic rotation,horizontal flip,resizing,and normalization.Moreover,by integrating Bernoulli trials to regulate spike generation,ourmethod focuses on extracting themost relevant featureswhile reducingcomputational overhead.Using a comprehensivedatasetof87,000RGB images across 38 classes,we rigorously preprocessed the data and evaluated three architectures:DeepSNN,SimpleCNN,and SimpleFCNN.The results demonstrate that DeepSNN outperforms the other models,achieving superior accuracy,efficient feature extraction,and robust spike management,thereby establishing the potential of SNNs for real-time,energy-efficient agricultural applications. 展开更多
关键词 AGRICULTURE image processing machine learning neural network optimization plant disease detection spiking neural networks(SNNs)
在线阅读 下载PDF
A hybrid particle swarm optimization approach with neural network and set pair analysis for transmission network planning 被引量:2
4
作者 刘吉成 颜苏莉 乞建勋 《Journal of Central South University》 SCIE EI CAS 2008年第S2期321-326,共6页
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ... Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA. 展开更多
关键词 transmission network planning SET PAIR analysis PARTICLE SWARM optimization NEURAL network
在线阅读 下载PDF
Radio Network Planning and Optimization for 5G Telecommunication System Based on Physical Constraints 被引量:2
5
作者 Hla Myo Tun 《Journal of Computer Science Research》 2021年第1期1-15,共15页
The paper mainly focuses on the network planning and optimization problem in the 5G telecommunication system based on the numerical investigation.There have been two portions of this work,such as network planning for ... The paper mainly focuses on the network planning and optimization problem in the 5G telecommunication system based on the numerical investigation.There have been two portions of this work,such as network planning for efficient network models and optimization of power allocation in the 5G network.The radio network planning process has been completed based on a specific area.The data rate requirement can be solved by allowing the densification of the system by deploying small cells.The radio network planning scheme is the indispensable platform in arranging a wireless network that encounters convinced coverage method,capacity,and Quality of Service necessities.In this study,the eighty micro base stations and two-hundred mobile stations are deployed in the-15km×15km wide selected area in the Yangon downtown area.The optimization processes were also analyzed based on the source and destination nodes in the 5G network.The base stations’location is minimized and optimized in a selected geographical area with the linear programming technique and analyzed in this study. 展开更多
关键词 network planning design Mathematical optimization 5G telecommunication system Numerical analysis Power allocation problem
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
6
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
Particle Swarm Optimization and Its Application in Transmission Network Expansion Planning
7
作者 Jin Yixiong Cheng Haozhong +1 位作者 Yan Jianyong Zhang Li 《Electricity》 2005年第3期32-36,共5页
The author introduced particle swarm optimization as a new method for power transmission network expansion planning. A new discrete method for particle swarm optimization was developed,which is suitable for power tran... The author introduced particle swarm optimization as a new method for power transmission network expansion planning. A new discrete method for particle swarm optimization was developed,which is suitable for power transmission network expansion planning, and requires less computer s memory.The optimization fitness function construction, parameter selection, convergence judgement, and their characters were analyzod.Numerical simulation demonstrated the effectiveness and correctness or the method. This paper provides an academic and practical basis of particle swarm optimization in application of transmission network expansion planning for further investigation. 展开更多
关键词 transmission network particle swarm optimization discrete method integer planning
在线阅读 下载PDF
Research on Grid Planning of Dual Power Distribution Network Based on Parallel Ant Colony Optimization Algorithm
8
作者 Shuaixiang Wang 《Journal of Electronic Research and Application》 2023年第1期32-41,共10页
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s... A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement. 展开更多
关键词 Parallel ant colony optimization algorithm Dual power sources Distribution network Grid planning
在线阅读 下载PDF
Optimization of beamforming and path planning for UAV-assisted wireless relay networks 被引量:16
9
作者 Ouyang Jian Zhuang Yi +1 位作者 Lin Min Liu Jia 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期313-320,共8页
Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifi... Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifically, in the scenario where the access point (AP) is mobile, a UAV needs to find an efficient path to guarantee the connectivity of the relay link. Motivated by this fact, this paper proposes an optimal design for beamforming (BF) and UAV path planning. First of all, we study a dual-hop amplify-and-forward (AF) wireless relay network, in which a UAV is used as relay between a mobile AP and a fixed base station (BS). In the network, both of the AP and the BS are equipped with multiple antennas, whereas the UAV has a single antenna. Then, we obtain the output signal^to-noise ratio (SNR) of the dual-hop relay network. Based on the criterion of maximizing the output SNR, we develop an optimal design to obtain the solution of the optimal BF weight vector and the UAV heading angle. Next, we derive the closed-form outage probability (OP) expression to investigate the performance of the dual-hop relay network conveniently. Finally, computer simulations show that the proposed approach can obtain nearly optimal flying path and OP performance, indicating the effectiveness of the proposed algorithm. Furthermore, we find that increasing the antenna number at the BS or the maximal heading angle can significantly improve the performance of the considered relay network. 展开更多
关键词 Aircraft communication Beam forming Path planning Unmanned aerial vehicles Wireless relay networks
原文传递
NEURAL NETWORK INTELLIGENT SYSTEM FOR THE ON-LINE OPTIMIZATION IN CHEMICAL PLANTS 被引量:1
10
作者 陈丙珍 何小荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第1期61-66,共6页
A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimizati... A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimization cases for a certain chemical plant are obtained off-line byusing PROCESS-Ⅱ or other flowsheeting programming with optimization.Then,taking these cases astraining examples,we establish a neural network systems which can be used on-line as an optimizer toobtain setpoints from input data sampled from distributed control system through gross error detectionand data reconciliation procedures.Such an on-line optimizer possesses two advantages over nonlinearprogramming package:first of all,there is no convergence problem for the trained ANN to be usedonline;secondly,the frequency for setpoints updating is not limited because only algebraic calculationrather than optimization is required to be carried out on-line.Here two key problems ofimplementing ANN approaches to the on-line optimization 展开更多
关键词 artificial NEURAL network ON-LINE optimization INTELLIGENT system
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
11
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Optimization of UMTS Network Planning Using Genetic Algorithms
12
作者 Fabio Garzia Cristina Perna Roberto Cusani 《Communications and Network》 2010年第3期193-199,共7页
The continuously growing of cellular networks complexity, which followed the introduction of UMTS technology, has reduced the usefulness of traditional design tools, making them quite unworthy. The purpose of this pap... The continuously growing of cellular networks complexity, which followed the introduction of UMTS technology, has reduced the usefulness of traditional design tools, making them quite unworthy. The purpose of this paper is to illustrate a design tool for UMTS optimized net planning based on genetic algorithms. In particular, some utilities for 3G net designers, useful to respect important aspects (such as the environmental one) of the cellular network, are shown. 展开更多
关键词 UMTS network planNING GENETIC ALGORITHMS
在线阅读 下载PDF
Planning hierarchical hospital service areas for maternal care using a network optimization approach:A case study in Hubei,China
13
作者 TAO Zhuolin CHENG Yang +2 位作者 BAl Lingyao FENG Ling WANG Shaoshuai 《Journal of Geographical Sciences》 SCIE CSCD 2022年第12期2577-2598,共22页
Improving maternal health is one of the Sustainable Development Goals.Hospital service areas(HSAs),which contain most hospitalization behaviors at the local scale,are crucial for health care planning.However,little at... Improving maternal health is one of the Sustainable Development Goals.Hospital service areas(HSAs),which contain most hospitalization behaviors at the local scale,are crucial for health care planning.However,little attention has been given to HSAs for maternal care and the hierarchy structure.Considering Hubei,central China,as a case study,this study aims to fill these gaps by developing a method for delineating hierarchical HSAs for maternal care using a network optimization approach.The approach is driven by actual patient flow data and has an explicit objective to maximize the modularity.It also establishes the hierarchical structure of maternal care HSAs,which is fundamental for the planning of hierarchical maternal care and referral systems.In our case study,45 secondary HSAs and 22tertiary HSAs are delineated to achieve maximal modularity.The HSAs perform well in terms of indices such as the Localization Index and Market Share Index.Furthermore,there is a complementary relationship between secondary and tertiary hospitals,which suggests the need for referral system planning.This study can provide evidence for the validity of the HSA and the planning of maternal care HSAs in China.It also provides transferable methods for planning hierarchical HSAs in other developing countries. 展开更多
关键词 hospital service areas hierarchical structure network optimization MODULARITY maternal care
原文传递
A two-level optimization approach to tree-level planning in continuous cover forest management
14
作者 Timo Pukkala Yrjö Nuutinen Timo Muhonen 《Journal of Forestry Research》 2025年第5期60-75,共16页
The current trends in forestry in Europe include the increased use of continuous cover forestry(CCF)and the increased availability of tree-level forest inventory data.Accordingly,recent literature suggests methodologi... The current trends in forestry in Europe include the increased use of continuous cover forestry(CCF)and the increased availability of tree-level forest inventory data.Accordingly,recent literature suggests methodologies for optimizing the harvest decisions at the tree level.Using tree-level optimization for all trees of the stand is computationally demanding.This study proposed a two-level optimization method for CCF where the harvest prescriptions are optimized at the tree level for only a part of the trees or the first cuttings.The higher-level algorithm optimizes the cutting years and the harvest rates of those diameter classes for which tree-level optimization is not used.The lower-level algorithm allocates the individually optimized trees to different cutting events.The most detailed problem formulations,employing much tree-level optimization,resulted in the highest net present value and longest optimization time.However,restricting tree-level optimization to the largest trees and first cuttings did not significantly alter the time,intensity,or type of first cutting.Computing times could also be shortened by applying accumulated knowledge from previous optimizations,implementing learning aspects in heuristic search,and optimizing the search algorithms for short computing time and good-quality solutions. 展开更多
关键词 Management optimization Forest planning Differential evolution Simulated annealing
在线阅读 下载PDF
UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm
15
作者 Wenli Lei Xinghao Wu +1 位作者 KunJia Jinping Han 《Computers, Materials & Continua》 2025年第6期5679-5698,共20页
Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose... Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution. 展开更多
关键词 UAV path planning chimp optimization algorithm chaotic mapping adaptive weighting
在线阅读 下载PDF
5G network planning in connecting urban areas for trains service using a genetic algorithm
16
作者 Evangelos D.Spyrou Vassilios Kappatos 《High-Speed Railway》 2025年第2期155-162,共8页
The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensur... The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensure passengers have a satisfactory experience throughout their journey.Installing base stations along urban environments can improve coverage but can dramatically reduce the experience of users due to interference.In particular,when a user with a mobile phone is a passenger in a high speed train traversing between urban centres,the coverage and the 5G resources in general need to be adequate not to diminish her experience of the service.The utilization of macro,pico,and femto cells may optimize the utilization of 5G resources.In this paper,a Genetic Algorithm(GA)-based approach to address the challenges of 5G network planning for 5G-R services is presented.The network is divided into three cell types,macro,pico,and femto cells—and the optimization process is designed to achieve a balance between key objectives:providing comprehensive coverage,minimizing interference,and maximizing energy efficiency.The study focuses on environments with high user density,such as high-speed trains,where reliable and high-quality connectivity is critical.Through simulations,the effectiveness of the GA-driven framework in optimizing coverage and performance in such scenarios is demonstrated.The algorithm is compared with the Particle Swarm Optimisation(PSO)and the Simulated Annealing(SA)methods and interesting insights emerged.The GA offers a strong balance between coverage and efficiency,achieving significantly higher coverage than PSO while maintaining competitive energy efficiency and interference levels.Its steady fitness improvement and adaptability make it well-suited for scenarios where wide coverage is a priority alongside acceptable performance trade-offs. 展开更多
关键词 High speed train 5G network planning Genetic algorithm
在线阅读 下载PDF
A hybrid genetic algorithm to the program optimization model based on a heterogeneous network
17
作者 CHEN Hang DOU Yajie +3 位作者 CHEN Ziyi JIA Qingyang ZHU Chen CHEN Haoxuan 《Journal of Systems Engineering and Electronics》 2025年第4期994-1005,共12页
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ... Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm. 展开更多
关键词 program optimization heterogeneous network genetic algorithm portfolio selection.
在线阅读 下载PDF
Enhancing operational planning of active distribution networks considering effective topology selection and thermal energy storage
18
作者 Vineeth Vijayan Ali Arzani Satish M.Mahajan 《iEnergy》 2025年第2期98-106,共9页
Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and pea... Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network. 展开更多
关键词 Operational planning power distribution network PV inverters thermal energy storage systems topology selection
在线阅读 下载PDF
An Optimization Method for Reducing Losses in Distribution Networks Based on Tabu Search Algorithm
19
作者 Jiaqian Zhao Xiufang Gu +1 位作者 Xiaoyu Wei Mingyu Bao 《Journal of Electronic Research and Application》 2025年第2期181-190,共10页
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio... With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning. 展开更多
关键词 Distribution network Loss reduction measures ECONOMY optimization model Tabu search algorithm
在线阅读 下载PDF
Bilevel Planning of Distribution Networks with Distributed Generation and Energy Storage: A Case Study on the Modified IEEE 33-Bus System
20
作者 Haoyuan Li Lingling Li 《Energy Engineering》 2025年第4期1337-1358,共22页
Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution netwo... Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%. 展开更多
关键词 Distribution network planning frank-copula joint output model bilevel programming theory
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部