Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large ...Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic.展开更多
Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, g...Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, grey theory, and chaos theory, this paper proposes a novel combined model, wavelet-grey-chaos (WGC), for network traffic prediction. In the WGC model, we develop a time series decomposition method without the boundary problem by modifying the standard à trous algorithm, decompose the network traffic into two parts, the residual part and the burst part to alleviate the accumulated error problem, and employ the grey model GM(1,1) and chaos model to predict the residual part and the burst part respectively. Simulation results on real network traffic show that the WGC model does improve prediction accuracy.展开更多
Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle t...Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.展开更多
Multiplicative multifractal process could well modal video traffic. The multiplier distributions in the multiplicatire multifractal model for video traffic are investigated and it is found that Gaussian is not suitabl...Multiplicative multifractal process could well modal video traffic. The multiplier distributions in the multiplicatire multifractal model for video traffic are investigated and it is found that Gaussian is not suitable for describing the multipliers on the small time scales. A new statistical distribution-symmetric Pareto distribution is introduced. It is applied instead of Gaussian for the multipliers on those scales. Based on that, the algorithm is updated so that symmetric pareto distribution and Gaussian distribution are used to model video traffic but on different time scales. The simulation results demonstrate that the algorithm could model video traffic more accurately.展开更多
One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alterna...One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alternative is to replace the background traffic by simplified abstract models such as fluid flows.This paper suggests a hybrid modeling approach for background traffic,which combines ON/OFF model with TCP activities.The ON/OFF model is to characterize the application activities,and the ordinary differential equations(ODEs) based on fluid flows is to describe the TCP congestion avoidance functionality.The apparent merits of this approach are(1) to accurately capture the traffic self-similarity at source level,(2) properly reflect the network dynamics,and(3) efficiently decrease the computational complexity.The experimental results show that the approach perfectly makes a proper trade-off between accuracy and complexity in background traffic simulation.展开更多
As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big probl...As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.展开更多
The technology of QoS routing has become a great challenge in Wireless Mesh Networks (WMNs). There exist a lot of literatures on QoS routing in WMNs, but the current algorithms have some deficiencies, such as high com...The technology of QoS routing has become a great challenge in Wireless Mesh Networks (WMNs). There exist a lot of literatures on QoS routing in WMNs, but the current algorithms have some deficiencies, such as high complexity, poor scalability and flexibility. To solve the problems above, a multipath routing algorithm based on traffic prediction (MRATP) is proposed in WMNs. MRATP consists of three modules including an algo-rithm on multipath routing built, a congestion discovery mechanism based on wavelet-neural network and a load balancing algorithm via multipath. Simulation results show that MRATP has some characteristics, such as better scalability, flexibility and robustness. Compared with the current algorithms, MRATP has higher success ratio, lower end to end delay and overhead. So MRATP can guarantee the end to end QoS of WMNs.展开更多
This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising fie...This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series展开更多
High resolution traffic measurements from modern communications networks provide unique opportunities for developing and validating mathematical models for aggregate traffic, or WAN (wide area network) traffic. To exp...High resolution traffic measurements from modern communications networks provide unique opportunities for developing and validating mathematical models for aggregate traffic, or WAN (wide area network) traffic. To exploit these opportunities, this paper emphasized the need for structural model that takes into account specific physical feature of the underlying communication network structure. This approach is in sharp contrast to the traditional black box modeling methodology from this time series analysis that ignores, in general, specific physical structure. The paper demonstrated, in particular, how the proposed structural modeling approach provides a direct link between the observed self similarity characteristic of measured aggregate network traffic and the strong empirical evidence in favor of heavy tailed, infinite variance phenomena at the level of individual network connections.展开更多
While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore,...While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight.展开更多
The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated ...The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter a and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.展开更多
A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propa...A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors(RTMS), floating car data(FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system(GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.展开更多
To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively ap...To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.展开更多
Aiming at the problem of lack of data model to analyze the level of transportation integration, the paper taking Changsha-Zhuzhou-Xiangtan City Group of China as the research object, based on the Gravity measurement m...Aiming at the problem of lack of data model to analyze the level of transportation integration, the paper taking Changsha-Zhuzhou-Xiangtan City Group of China as the research object, based on the Gravity measurement model, transportation comprehensive distance model, weighted road density model, analysis of Changsha-Zhuzhou-Xiangtan City Group accessibility and transportation integration level. A new method to measure the level of traffic integration is proposed and verified by the road network data and socio-economic data of Changsha-Zhuzhou-Xiangtan City Group. The results show that: Changsha-Zhuzhou-Xiangtan City Group traffic accessibility was “point to surface” shape distribution, taking the core region of Changsha as the optimal, Xiangtan, Zhuzhou, Changsha County next, in remote Yanling County, Chaling county has the lowest accessibility;the correlation between traffic network connection degree and economic connection degree reached 0.871, indicating that the transportation integration level of urban agglomerations has a high degree of fit with the level of economic integration. The research results on the one hand for the Chang-Zhuzhou-Xiangtan urban agglomeration traffic present situation to make an annotation;on the other hand, that provide a reference for further optimization of Changsha-Zhuzhou-Xiangtan urban agglomeration traffic planning.展开更多
基金the National High Technology Research and Development Program (863) of China(Nos. 2005AA145110 and 2006AA01Z436)the Natural Science Foundation of Shanghai of China(No. 05ZR14083)the Pudong New Area Technology Innovation Public Service Platform of China(No. PDPT2005-04)
文摘Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic.
基金Project supported by National Basic Research Program of China (Grant Nos 2009CB320505 and 2009CB320504)National High Technology Research and Development Program of China (Grant Nos 2006AA01Z235, 2007AA01Z206 and 2009AA01Z210)
文摘Network traffic prediction models can be grouped into two types, single models and combined ones. Combined models integrate several single models and thus can improve prediction accuracy. Based on wavelet transform, grey theory, and chaos theory, this paper proposes a novel combined model, wavelet-grey-chaos (WGC), for network traffic prediction. In the WGC model, we develop a time series decomposition method without the boundary problem by modifying the standard à trous algorithm, decompose the network traffic into two parts, the residual part and the burst part to alleviate the accumulated error problem, and employ the grey model GM(1,1) and chaos model to predict the residual part and the burst part respectively. Simulation results on real network traffic show that the WGC model does improve prediction accuracy.
基金This work is supported by the State 863 Program (2003AA148040), the National Science Foundation of China (No. 10471151, No. 60216263, No. 6990312), New Century Excellent Talent Support Project of Chinese Ministry of Education, Doctor Station Foundation of Chinese Ministry of Education, Chongqing Tackle Key Problem Program (CSTC, 2004AC2008) and Chongqing Natural Science Foundation (CSTC, 2004BB2151).
文摘Intrusion detection system ean make effective alarm for illegality of networkusers, which is absolutely necessarily and important to build security environment of communicationbase service According to the principle that the number of network traffic can affect the degree ofself-similar traffic, the paper investigates the variety of self-similarity resulted fromunconventional network traffic. A network traffic model based on normal behaviors of user isproposed and the Hursl parameter of this model can be calculated. By comparing the Hurst parameterof normal traffic and the self-similar parameter, we ean judge whether the network is normal or notand alarm in time.
文摘Multiplicative multifractal process could well modal video traffic. The multiplier distributions in the multiplicatire multifractal model for video traffic are investigated and it is found that Gaussian is not suitable for describing the multipliers on the small time scales. A new statistical distribution-symmetric Pareto distribution is introduced. It is applied instead of Gaussian for the multipliers on those scales. Based on that, the algorithm is updated so that symmetric pareto distribution and Gaussian distribution are used to model video traffic but on different time scales. The simulation results demonstrate that the algorithm could model video traffic more accurately.
基金supported by the Science and Technology Project of Zhejiang Province(No. 2014C01051)the National High Technology Development 863 Program of China( No.2015AA011901)
文摘One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alternative is to replace the background traffic by simplified abstract models such as fluid flows.This paper suggests a hybrid modeling approach for background traffic,which combines ON/OFF model with TCP activities.The ON/OFF model is to characterize the application activities,and the ordinary differential equations(ODEs) based on fluid flows is to describe the TCP congestion avoidance functionality.The apparent merits of this approach are(1) to accurately capture the traffic self-similarity at source level,(2) properly reflect the network dynamics,and(3) efficiently decrease the computational complexity.The experimental results show that the approach perfectly makes a proper trade-off between accuracy and complexity in background traffic simulation.
文摘As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.
文摘The technology of QoS routing has become a great challenge in Wireless Mesh Networks (WMNs). There exist a lot of literatures on QoS routing in WMNs, but the current algorithms have some deficiencies, such as high complexity, poor scalability and flexibility. To solve the problems above, a multipath routing algorithm based on traffic prediction (MRATP) is proposed in WMNs. MRATP consists of three modules including an algo-rithm on multipath routing built, a congestion discovery mechanism based on wavelet-neural network and a load balancing algorithm via multipath. Simulation results show that MRATP has some characteristics, such as better scalability, flexibility and robustness. Compared with the current algorithms, MRATP has higher success ratio, lower end to end delay and overhead. So MRATP can guarantee the end to end QoS of WMNs.
文摘This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model( GM model), and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series
文摘High resolution traffic measurements from modern communications networks provide unique opportunities for developing and validating mathematical models for aggregate traffic, or WAN (wide area network) traffic. To exploit these opportunities, this paper emphasized the need for structural model that takes into account specific physical feature of the underlying communication network structure. This approach is in sharp contrast to the traditional black box modeling methodology from this time series analysis that ignores, in general, specific physical structure. The paper demonstrated, in particular, how the proposed structural modeling approach provides a direct link between the observed self similarity characteristic of measured aggregate network traffic and the strong empirical evidence in favor of heavy tailed, infinite variance phenomena at the level of individual network connections.
文摘While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight.
文摘The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter a and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(51678045,51578052)supported by the National Natural Science Foundation of ChinaProject(2016JBM032)supported by the Fundamental Research Funds for the Central Universities,China
文摘A practical approach for predicting the congestion boundary due to traffic incidents was proposed. Based on the kinematic wave theory and Van Aerde single-regime flow model, a model for estimating the congestion propagation speed for the basic road segment was developed. Historical traffic flow data were used to analyze the time variant characteristics of the urban traffic flow for each road type. Then, the saturation flow rate was used for analyzing the impact of the traffic incident on the traversing traffic flow at the congestion area. The base congestion propagation speed for each road type was calculated based on field data, which were provided by the remote traffic microwave sensors(RTMS), floating car data(FCD) system and screen line survey. According to a comparative analysis of the congestion propagation speed, it is found that the expressway, major arterial, minor arterial and collector are decreasingly influenced by the traffic incident. Subsequently, the impact of turning movements at intersections on the congestion propagation was considered. The turning ratio was adopted to represent the impact of turning movements, and afterward the corresponding propagation pattern at intersections was analyzed. Finally, an implementation system was designed on a geographic information system(GIS) platform to display the characteristics of the congestion propagation over the network. The validation results show that the proposed approach is able to capture the congestion propagation properties in the actual road network.
文摘To reduce the computation cost of a combined probabilistic graphical model and a deep neural network in semantic segmentation, the local region condition random field (LRCRF) model is investigated which selectively applies the condition random field (CRF) to the most active region in the image. The full convolutional network structure is optimized with the ResNet-18 structure and dilated convolution to expand the receptive field. The tracking networks are also improved based on SiameseFC by considering the frame relations in consecutive-frame traffic scene maps. Moreover, the segmentation results of the greyscale input data sets are more stable and effective than using the RGB images for deep neural network feature extraction. The experimental results show that the proposed method takes advantage of the image features directly and achieves good real-time performance and high segmentation accuracy.
文摘Aiming at the problem of lack of data model to analyze the level of transportation integration, the paper taking Changsha-Zhuzhou-Xiangtan City Group of China as the research object, based on the Gravity measurement model, transportation comprehensive distance model, weighted road density model, analysis of Changsha-Zhuzhou-Xiangtan City Group accessibility and transportation integration level. A new method to measure the level of traffic integration is proposed and verified by the road network data and socio-economic data of Changsha-Zhuzhou-Xiangtan City Group. The results show that: Changsha-Zhuzhou-Xiangtan City Group traffic accessibility was “point to surface” shape distribution, taking the core region of Changsha as the optimal, Xiangtan, Zhuzhou, Changsha County next, in remote Yanling County, Chaling county has the lowest accessibility;the correlation between traffic network connection degree and economic connection degree reached 0.871, indicating that the transportation integration level of urban agglomerations has a high degree of fit with the level of economic integration. The research results on the one hand for the Chang-Zhuzhou-Xiangtan urban agglomeration traffic present situation to make an annotation;on the other hand, that provide a reference for further optimization of Changsha-Zhuzhou-Xiangtan urban agglomeration traffic planning.