It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimens...It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass.展开更多
Anomaly based approaches in network intrusion detection suffer from evaluation, comparison and deployment which originate from the scarcity of adequate publicly available network trace datasets. Also, publicly availab...Anomaly based approaches in network intrusion detection suffer from evaluation, comparison and deployment which originate from the scarcity of adequate publicly available network trace datasets. Also, publicly available datasets are either outdated or generated in a controlled environment. Due to the ubiquity of cloud computing environments in commercial and government internet services, there is a need to assess the impacts of network attacks in cloud data centers. To the best of our knowledge, there is no publicly available dataset which captures the normal and anomalous network traces in the interactions between cloud users and cloud data centers. In this paper, we present an experimental platform designed to represent a practical interaction between cloud users and cloud services and collect network traces resulting from this interaction to conduct anomaly detection. We use Amazon web services (AWS) platform for conducting our experiments.展开更多
We read the study conducted by Cui et al.published in China CDC Weekly with great interest,and would like to make comment on this matter(1).The report identified 31 Salmonella enterica serovar I 1,4,[5],12:i:-(S.I 1,4...We read the study conducted by Cui et al.published in China CDC Weekly with great interest,and would like to make comment on this matter(1).The report identified 31 Salmonella enterica serovar I 1,4,[5],12:i:-(S.I 1,4,[5],12:i:-)sequence type 8333(ST8333)genomes by the end of 2023 in the National Molecular Tracing Network for Foodborne Disease Surveillance database.The overall percentage of isolates of S.I 1,4,[5],12:i:-ST8333 remained low in their active monitoring between 2017 and 2023,and observed ST8333 in 2017.展开更多
基金supported by grants from the Human Resources Development program (Grant No.20204010600250)the Training Program of CCUS for the Green Growth (Grant No.20214000000500)by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)funded by the Ministry of Trade,Industry,and Energy of the Korean Government (MOTIE).
文摘It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass.
文摘Anomaly based approaches in network intrusion detection suffer from evaluation, comparison and deployment which originate from the scarcity of adequate publicly available network trace datasets. Also, publicly available datasets are either outdated or generated in a controlled environment. Due to the ubiquity of cloud computing environments in commercial and government internet services, there is a need to assess the impacts of network attacks in cloud data centers. To the best of our knowledge, there is no publicly available dataset which captures the normal and anomalous network traces in the interactions between cloud users and cloud data centers. In this paper, we present an experimental platform designed to represent a practical interaction between cloud users and cloud services and collect network traces resulting from this interaction to conduct anomaly detection. We use Amazon web services (AWS) platform for conducting our experiments.
基金Supported in part by grants from the Project for the National Key Research and Development Program of China(2023YFC2307101)Young Scientist of the Joint Funds of Science and Technology Research and Development Plan of Henan Province,China(235200810058)Young TopNotch Talents Foundation of Henan Agricultural University(30501278).
文摘We read the study conducted by Cui et al.published in China CDC Weekly with great interest,and would like to make comment on this matter(1).The report identified 31 Salmonella enterica serovar I 1,4,[5],12:i:-(S.I 1,4,[5],12:i:-)sequence type 8333(ST8333)genomes by the end of 2023 in the National Molecular Tracing Network for Foodborne Disease Surveillance database.The overall percentage of isolates of S.I 1,4,[5],12:i:-ST8333 remained low in their active monitoring between 2017 and 2023,and observed ST8333 in 2017.