Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced...Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t...Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural ...The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural network with multilayer perceptron(MLP) topology was used to build the predictive model.The model was created on the basis of meteorological data(air temperature and atmospheric precipitation) and mineral fertilization data.The data were collected in the period 2008–2017 from 291 productive fields located in Poland,in the southern part of the Opole region.The assessment of the forecast quality created on the basis of the neural model has been verified by defining forecast errors using relative approximation error(RAE),root mean square error(RMS),mean absolute error(MAE),and mean absolute percentage error(MAPE) metrics.An important feature of the created predictive model is the ability to forecast the current agrotechnical year based on current weather and fertilizing data.The lowest value of the MAPE error was obtained for a neural network model based on the MLP network of 21:21-13-6-1:1 structure,which was 9.43%.The performed sensitivity analysis of the network examined the factors that have the greatest impact on the yield of winter rape.The highest rank 1 was obtained by an independent variable with the average air temperature from 1 January to 15 April of 2017(designation by the T1-4_CY model).展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ...Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.展开更多
Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitropbenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and ...Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitropbenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). An artificial neural network model (ANN) was developed to predict the photocatalytic removal of 4-NP in the presence of TiOz nanoparticles prepared under desired conditions. The comparison between the predicted results by designed ANN model and the experimental data proved that modeling of the removal process of 4-NP using artificial neural network was a precise method to predict the extent of 4-NP removal under different conditions.展开更多
In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperatur...In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperature in the process of dephosphorization by laying correlative degree weights to all input factors related was used. Then sim- ulation experiment of model newly established is conducted utilizing 210 data from a domestic steel plant. The results show that hit rate arrives at 56.45~~ when error is within plus or minus 5%, and the value is 100% when within ~10%. Comparing to the traditional neural network prediction model, the accuracy almost increases by 6. 839o//oo. Thus, the simulation prediction fits the real perfectly, which accounts for that neural network model for terminative tempera- ture based on grey theory can reflect accurately the practice in dephosphorization. Naturally, this method is effective and nraeticahle.展开更多
The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper...The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced.展开更多
Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the p...Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the information diffusion method, which improves the precision of risk recognition when there is insufficient information. Experiments demonstrate that the method proposed in this paper is simple and effective and provides better forecast results than other methods. Future work will focus on a more precise forecast model.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
By using alternating current plasma arc welding,the influences were studied of such parameters as welding curent,arc voltage,welding speed,wire feed rate,and magnitude of ion gas flow on front melting width,wdle rei...By using alternating current plasma arc welding,the influences were studied of such parameters as welding curent,arc voltage,welding speed,wire feed rate,and magnitude of ion gas flow on front melting width,wdle reinforcement,and back melting width of LF6 aluminum alloy.Model of the formation of welding seam in alternating current plasma arc welding of aluminum was set up with the method of artificial neural neural network - BP algorithm. Qyakuty of formation was consequently predicted and evaluated.The experimental result shows that,compared with other modeling methods,artificial network model can be used to more accurately predict formation of weld,and to guide the production practice.展开更多
In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional ru...In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology.展开更多
This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint mo...This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint model to investigate the damages caused by typhoons for a coastal province,Fujian Province,China in 2005-2015(latest).First,the PCA is applied to analyze comprehensively the relationship between hazard factors,hazard bearing factors and disaster factors.Then five integrated indices,overall disaster level,typhoon intensity,damaged condition of houses,medical rescue and self-rescue capability,are extracted through the PCA;Finally,the BP neural network model,which takes the principal component scores as input and is optimized by the LM algorithm,is implemented to forecast the comprehensive loss of typhoons.It is estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015,with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the typhoon intensity increases.The model was validated using three typhoon events and it is found that the error is less than 1%.These results provide information for the government to increase medical institutions and medical workers and for the communities to promote residents’self-rescue capability.展开更多
In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the compr...In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.展开更多
A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are runn...A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.展开更多
Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geop...Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast.展开更多
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ...Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
文摘Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
文摘Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘The aim of the research was to create a prediction model for winter rapeseed yield.The constructed model enabled to perform simulation on 30 June,in the current year,immediately before harvesting.An artificial neural network with multilayer perceptron(MLP) topology was used to build the predictive model.The model was created on the basis of meteorological data(air temperature and atmospheric precipitation) and mineral fertilization data.The data were collected in the period 2008–2017 from 291 productive fields located in Poland,in the southern part of the Opole region.The assessment of the forecast quality created on the basis of the neural model has been verified by defining forecast errors using relative approximation error(RAE),root mean square error(RMS),mean absolute error(MAE),and mean absolute percentage error(MAPE) metrics.An important feature of the created predictive model is the ability to forecast the current agrotechnical year based on current weather and fertilizing data.The lowest value of the MAPE error was obtained for a neural network model based on the MLP network of 21:21-13-6-1:1 structure,which was 9.43%.The performed sensitivity analysis of the network examined the factors that have the greatest impact on the yield of winter rape.The highest rank 1 was obtained by an independent variable with the average air temperature from 1 January to 15 April of 2017(designation by the T1-4_CY model).
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
基金financially supported by the National Natural Science Foundation of China(Nos.51275415 and50905144)the Natural Science Basic Research Plan in Shanxi Province(No.2011JQ6004)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B08040)
文摘Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.
文摘Titanium dioxide (TiO2) nanoparticles were prepared by sol gel route. The preparation parameters were optimized in the removal of 4-nitropbenol (4-NP). All catalysts were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). An artificial neural network model (ANN) was developed to predict the photocatalytic removal of 4-NP in the presence of TiOz nanoparticles prepared under desired conditions. The comparison between the predicted results by designed ANN model and the experimental data proved that modeling of the removal process of 4-NP using artificial neural network was a precise method to predict the extent of 4-NP removal under different conditions.
基金Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China (2006BAE03A07)
文摘In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperature in the process of dephosphorization by laying correlative degree weights to all input factors related was used. Then sim- ulation experiment of model newly established is conducted utilizing 210 data from a domestic steel plant. The results show that hit rate arrives at 56.45~~ when error is within plus or minus 5%, and the value is 100% when within ~10%. Comparing to the traditional neural network prediction model, the accuracy almost increases by 6. 839o//oo. Thus, the simulation prediction fits the real perfectly, which accounts for that neural network model for terminative tempera- ture based on grey theory can reflect accurately the practice in dephosphorization. Naturally, this method is effective and nraeticahle.
文摘The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced.
基金Supported by the MISSION 908 (Nos. 908-02-03-07, SD-908-02-08)
文摘Back propagation is employed to forecast the current of a storm with various characteristics of storm surge; the technique is thus important in disaster forecasting. One of the most fuzzy types of information in the prediction of geological calamity is handled employing the information diffusion method. First, a single-step prediction model and neural network prediction model are employed to collect influential information used to predict the extreme tide level. Second, information is obtained using the information diffusion method, which improves the precision of risk recognition when there is insufficient information. Experiments demonstrate that the method proposed in this paper is simple and effective and provides better forecast results than other methods. Future work will focus on a more precise forecast model.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
文摘By using alternating current plasma arc welding,the influences were studied of such parameters as welding curent,arc voltage,welding speed,wire feed rate,and magnitude of ion gas flow on front melting width,wdle reinforcement,and back melting width of LF6 aluminum alloy.Model of the formation of welding seam in alternating current plasma arc welding of aluminum was set up with the method of artificial neural neural network - BP algorithm. Qyakuty of formation was consequently predicted and evaluated.The experimental result shows that,compared with other modeling methods,artificial network model can be used to more accurately predict formation of weld,and to guide the production practice.
基金financially supported by the National Natural Science Foundation of China(41761014,42161025,42101096)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20020201)the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University,and the Excellent Platform of Lanzhou Jiaotong University。
文摘In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology.
文摘This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint model to investigate the damages caused by typhoons for a coastal province,Fujian Province,China in 2005-2015(latest).First,the PCA is applied to analyze comprehensively the relationship between hazard factors,hazard bearing factors and disaster factors.Then five integrated indices,overall disaster level,typhoon intensity,damaged condition of houses,medical rescue and self-rescue capability,are extracted through the PCA;Finally,the BP neural network model,which takes the principal component scores as input and is optimized by the LM algorithm,is implemented to forecast the comprehensive loss of typhoons.It is estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015,with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the typhoon intensity increases.The model was validated using three typhoon events and it is found that the error is less than 1%.These results provide information for the government to increase medical institutions and medical workers and for the communities to promote residents’self-rescue capability.
基金Under the auspices of Special Financial Grant and General Financial Grant from the China Postdoctoral Science Foundation(No.2015T80127,2014M561040)National Natural Science Foundation of China(No.41371172,41401171,41471143)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H101)
文摘In this paper, the artificial neural network(ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.
文摘A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation.
基金Publicity of New Techniques of China Meteorological Administration (CMATG2005M38)
文摘Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast.
基金Financial support provided by the National Natural Science Foundation of China(Grant Nos.11702042 and 91952104)。
文摘Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.