期刊文献+
共找到41,128篇文章
< 1 2 250 >
每页显示 20 50 100
Genome-scale metabolic network model-guided genetic modification of Escherichia coli for pyruvate accumulation
1
作者 LI Xuefei GUO Chaohao +4 位作者 TONG Wenyue YANG Sen LIU Xiaoyun LI Jingchen KANG Ming 《微生物学报》 北大核心 2025年第10期4374-4391,共18页
[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a... [Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering. 展开更多
关键词 Escherichia coli PYRUVATE genome-scale metabolic network model CRISPR-Cas9 adaptive laboratory evolution
原文传递
In situ loading of a pore network model for quantitative characterization and visualization of gas seepage in coal rocks
2
作者 Huazhe Jiao Xi Chen +4 位作者 Tiegang Zhang Quilligan Michael Yixuan Yang Xiaolin Yang Tongyi Yang 《Deep Underground Science and Engineering》 2025年第3期437-451,共15页
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ... The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells. 展开更多
关键词 coalbed methane fractal dimension FRACTURE pore network model SEEPAGE
原文传递
A non-affine constitutive model for the extremely large deformation of hydrogel polymer network based on network modeling method
3
作者 Jincheng Lei Yuan Gao +1 位作者 Danyang Wang Zishun Liu 《Acta Mechanica Sinica》 2025年第7期69-80,共12页
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym... Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well. 展开更多
关键词 Non-affine deformation Periodic random network model Large deformation Constitutive model
原文传递
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:2
4
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation Three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
在线阅读 下载PDF
Investigation Study of Structure Real Load Spectra Acquisition and Fatigue Life Prediction Based on the Optimized E cient Hinging Hyperplane Neural Network Model 被引量:1
5
作者 Lin Zhu Benao Xing +2 位作者 Xingbao Li Min Chen Minping Jia 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期628-648,共21页
In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predi... In the realm of engineering practice,various factors such as limited availability of measurement data and complex working conditions pose significant challenges to obtaining accurate load spectra.Thus,accurately predicting the fatigue life of structures becomes notably arduous.This paper proposed an approach to predict the fatigue life of structure based on the optimized load spectra,which is accurately estimated by an efficient hinging hyperplane neural network(EHH-NN)model.The construction of the EHH-NN model includes initial network generation and parameter optimization.Through the combination of working conditions design,multi-body dynamics analysis and structural static mechanics analysis,the simulated load spectra of the structure are obtained.The simulated load spectra are taken as the input variables for the optimized EHH-NN model,while the measurement load spectra are used as the output variables.The prediction results of case structure indicate that the optimized EHH-NN model can achieve the high-accuracy load spectra,in comparison with support vector machine(SVM),random forest(RF)model and back propagation(BP)neural network.The error rate between the prediction values and the measurement values of the optimized EHH-NN model is 4.61%.In the Cauchy-Lorentz distribution,the absolute error data of 92%with EHH-NN model appear in the intermediate range of±1.65%.Also,the fatigue life analysis is performed for the case structure,based on the accurately predicted load spectra.The fatigue life of the case structure is calculated based on the comparison between the measured and predicted load spectra,with an accuracy of 93.56%.This research proposes the optimized EHH-NN model can more accurately reflect the measurement load spectra,enabling precise calculation of fatigue life.Additionally,the optimized EHH-NN model provides reliability assessment for industrial engineering equipment. 展开更多
关键词 Efficient hinging hyperplane neural network model ANOVA decomposition Load spectra optimization Optimal parameter Fatigue life prediction
在线阅读 下载PDF
Stock return prediction with multiple measures using neural network models 被引量:1
6
作者 Cong Wang 《Financial Innovation》 2024年第1期1073-1106,共34页
In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigat... In the field of empirical asset pricing,the challenges of high dimensionality,non-linear relationships,and interaction effects have led to the increasing popularity of machine learning(ML)methods.This study investigates the performance of ML methods when predicting different measures of stock returns from various factor models and investigates the feature importance and interaction effects among firm-specific variables and macroeconomic factors in this context.Our findings reveal that neural network models exhibit consistent performance across different stock return measures when they rely solely on firm-specific characteristic variables.However,the inclusion of macroeconomic factors from the financial market,real economic activities,and investor sentiment leads to substantial improvements in the model performance.Notably,the degree of improvement varies with the specific measures of stock returns under consideration.Furthermore,our analysis indicates that,after the inclusion of macroeconomic factors,there is a dissimilarity in model performance,variable importance,and interaction effects among macroeconomic and firm-specific variables,particularly concerning abnormal returns derived from the Fama–French three-and five-factor models compared with excess returns.This divergence is primarily attributed to the extent to which these factor models remove the variance associated with the macroeconomic variables.These findings collectively offer valuable insights into the efficacy of neural network models for stock return predictions and contribute to a deeper understanding of the intricate relationship between factor models,stock returns,and macroeconomic conditions in the domain of empirical asset pricing. 展开更多
关键词 Neural network model Stock return Macroeconomic conditions Factor model
在线阅读 下载PDF
Application of interpolated double network model for carbon nanotube composites in electrothermal shape memory behaviors
7
作者 Ting Fu Zhao Yan +2 位作者 Li Zhang Ran Tao Yiqi Mao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期133-153,共21页
Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design ... Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design scenarios and engineering application prospects.The thermoelectrically triggered shape memory process contains complex multi-physical mechanisms,especially when coupled with finite deformation rooted on micro-mechanisms.A multi-physical finite deformation model is necessary to get a deep understanding on the coupled electro-thermomechanical properties of electrothermal shape memory composites(ESMCs),beneficial to its design and wide application.Taking into consideration of micro-physical mechanisms of the MWCNTs interacting with double-chain networks,a finite deformation theoretical model is developed in this work based on two superimposed network chains of physically crosslinked network formed among MWCNTs and the chemically crosslinked network.An intact crosslinked chemical network is considered featuring with entropic-hyperelastic properties,superimposed with a physically crosslinked network where percolation theory is based on electric conductivity and electric-heating mechanisms.The model is calibrated by experiments and used for shape recoveries triggered by heating and electric fields.It captures the coupled electro-thermomechanical behavior of ESMCs and provides design guidelines for MWCNTs filled shape memory polymers. 展开更多
关键词 Shape memory polymer composite Viscoplastic constitutive relations Electro-thermomechanics Double network model Multiple shape memory
原文传递
Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling
8
作者 Peng Liu Yulong Zhao +5 位作者 Zhengduo Zhao Huiming Yang Baisheng Nie Hengyi He Quangui Li Guangjie Bao 《International Journal of Coal Science & Technology》 CSCD 2024年第5期121-141,共21页
Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is... Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is crucial for CBM development.This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals.It shows that the porosity is 7.04%-8.47%and 10.88%-12.11%,and the pore connectivity is 0.5422-0.6852 and 0.7948-0.9186 for coal samples 1 and 2,respectively.The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure.The results show that the pore structure of sample 2 is more complex and developed,with lower tortuosity,indicating the higher fluid deliverability of pore system in sample 2.The tortuosity in three-direction is significantly different,indicating that the pore structure of the studied coals has significant anisotropy.The equivalent pore network model(PNM)was extracted,and the anisotropic permeability was estimated by PNM gas flow simulation.The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure.The permeability in the horizontal direction is much greater than that in the vertical direction,indicating that the dominant transportation channel is along the horizontal direction of the studied coals.The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size,connectivity,curvature,permeability,and its anisotropic characteristics at micron-scale resolution.This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures. 展开更多
关键词 CT image Heterogeneous pore structure Pore network model Coal permeability Coalbed methane
在线阅读 下载PDF
Comparative Analysis of the Factors Influencing Metro Passenger Arrival Volumes in Wuhan, China, and Lagos, Nigeria: An Application of Association Rule Mining and Neural Network Models
9
作者 Bello Muhammad Lawan Jabir Abubakar Shuyang Zhang 《Journal of Transportation Technologies》 2024年第4期607-653,共47页
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac... This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals. 展开更多
关键词 Metro Passenger Arrival volume Influencing Factor Analysis Wuhan and Lagos Metro Neural network modeling Association Rule Mining Technique
在线阅读 下载PDF
Percolation Network Modeling of Electrical Properties of Reservoir Rock* 被引量:2
10
作者 王克文 孙建孟 +1 位作者 关继腾 苏远大 《Applied Geophysics》 SCIE CSCD 2005年第4期223-229,共7页
Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amoun... Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amount of micropores on the I - Sw curve using numerical modeling. The effects of formation water salinity on the electrical resistivity of the rock are discussed. Then the relative magnitudes of the different influencing factors are discussed. The effects of the different factors on the I - Sw curve are analyzed by fitting simulation results. The results show that the connectivity of the void spaces and the amount of micropores have a large effect on the I - S, curve, while the other factors have little effect. The formation water salinity has a large effect on the absolute resistivity values. The non-Archie phenomenon is prevalent, which is remarkable in rocks with low permeability. 展开更多
关键词 rock resistivity saturation exponent network modeling reservoir characteristics.
在线阅读 下载PDF
Optimal path finding algorithms based on SLSD road network model 被引量:3
11
作者 张小国 王庆 龚福祥 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期558-562,共5页
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an... A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network. 展开更多
关键词 optimal path finding road network model conceptual model digital map vehicle navigation system A algorithm Dijkstra algorithm
在线阅读 下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
12
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
在线阅读 下载PDF
Study of the permeability characteristics of porous media with methane hydrate by pore network model 被引量:8
13
作者 Haifeng Liang Yongchen Song Yu Liu Mingjun Yang Xing Huang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期255-260,共6页
The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional ... The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional cubic pore-network model based on invasion percolation is developed to study the effect of hydrate particle formation and growth habit on the permeability.The variation of permeability in porous media with different hydrate saturation is studied by solving the network problem.The simulation results are well consistent with the experimental data.The proposed model predicts that the permeability will reduce exponentially with the increase of hydrate saturation,which is crucial in developing a deeper understanding of the mechanism of hydrate formation and dissociation in porous media. 展开更多
关键词 pore network model hydrate saturation PERMEABILITY porous media
在线阅读 下载PDF
Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005) 被引量:6
14
作者 WANG Jun MENG Jijun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期327-338,共12页
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin... The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin. 展开更多
关键词 annual runoff variations wavelet analysis wavelet neural network model GIS spatial analysis HeiheRiver drainage basin
在线阅读 下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
15
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized BP neural network model sum of square weights
在线阅读 下载PDF
Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey 被引量:4
16
作者 ilker Ercanli Alkan Gunlu +1 位作者 Muammer Senyurt Sedat Keles 《Forest Ecosystems》 SCIE CSCD 2018年第4期400-411,共12页
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic... Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands. 展开更多
关键词 Leaf area index Multivariate linear regression model Artificial neural network modeling Crimean pine Stand parameters
在线阅读 下载PDF
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
17
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking Dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
在线阅读 下载PDF
Numerical simulation of neuronal spike patterns in a retinal network model 被引量:1
18
作者 Lei Wang Shenquan Liu Shanxing Ou 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第16期1254-1260,共7页
This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stim... This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stimulation of different shapes and sizes, changes in the spike features of ganglion cells indicated that different shapes of light stimulation elicited different retinal responses. By manipulating the shape of light stimulation, we investigated the effects of the large number of electrical synapses existing between retinal neurons. Model simulation and analysis suggested that interplexiform cells play an important role in visual signal information processing in the retina, and the findings indicated that our constructed retinal network model was reliable and feasible. In addition, the simulation results demonstrated that ganglion cells exhibited a variety of spike patterns under different light stimulation sizes and different stimulation shapes, which reflect the functions of the retina in signal transmission and processing. 展开更多
关键词 computational network model RETINA light stimulation ganglion cell spike pattern
在线阅读 下载PDF
Pore network modeling of water block in low permeability reservoirs 被引量:11
19
作者 Shao Changjin Yang Zhenqing Zhou Guanggang Lu Guiwu 《Petroleum Science》 SCIE CAS CSCD 2010年第3期362-366,共5页
A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relati... A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation. 展开更多
关键词 Pore-network model water block relative permeability number low permeability wettability
原文传递
Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models 被引量:5
20
作者 Zhi-Jun Tao He Yang +2 位作者 Heng Li Jun Ma Peng-Fei Gao 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期162-171,共10页
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ... Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes. 展开更多
关键词 TC4 tube Compression behavior Constitutive model Modified Arrhenius model Neural network model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部