期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Effects of Climate Comfort on Tourists' Network Attention: A Case Study of the Inner Mongolia Autonomous Region
1
作者 WANG Gongwei 《Journal of Landscape Research》 2018年第4期149-152,共4页
Based on the data of climate and Baidu Index, the temporal and spatial variation of climate comfort and toudsts9 network attention in Inner Mongolia was analyzed, and the effect of dimate comfort on tourists, net... Based on the data of climate and Baidu Index, the temporal and spatial variation of climate comfort and toudsts9 network attention in Inner Mongolia was analyzed, and the effect of dimate comfort on tourists, network attention. The results showed, tiiat ① Inner Mongolia had a summer-comfortable toudsm climate, and it was uncomfortable to visit Inner Mongolia in winter. With the decrease of latitude, the climate comfort index gradually rose in Inner Mongolia, with a distribution pattern of l"ow in the east and high in the west". There were three types of distribution of the climate comfort index: M-shaped, inverted U-shaped, and inverted V-shaped ② Toutasts5 network attention had certain dependence on the development level of tourism in wrious regions. The degree of network attention of regions with a high level of tourism development was also relatively high, and its distribution was more uniform. Monthly indexes of the tourists, network attention had three types: M-shaped, inverted U-shaped, and inverted V-shaped. ③ On the whole, climate comfort had a positive impact on the degree of network attention, butwith the improvement of the level of tourism development, the impact of climate comfort on the degree of attention of visitors would be weakened.④ The impact of climate comfort on the tourists, network. 展开更多
关键词 Tourism climate Climate comfort network attention Baidu Index Inner Mongolia
在线阅读 下载PDF
Dynamic coupled coordination and spatial correlation between ice-snow tourism network attention and tourism industry development systems:Evidence from 31 provinces of China
2
作者 QiuLing Ge JianPing Yang YiLin Wang 《Research in Cold and Arid Regions》 CSCD 2024年第5期259-267,共9页
Using the coupled coordination degree model,DEA coupled coordination efficiency model,and spatial autocorrelation model,this study explored the dynamic coupled coordination relationship and spatial correlation between... Using the coupled coordination degree model,DEA coupled coordination efficiency model,and spatial autocorrelation model,this study explored the dynamic coupled coordination relationship and spatial correlation between the ice-snow tourism network attention and tourism industry development in 31 Chinese provinces and proposed suggestions pertaining to development.Our findings showed that(1)most provinces have not yet achieved excellent coordinated development between the two systems,and the coupled coordination efficiency is low.Each province's coupled coordination degree and coordination efficiency exhibited a small increase.(2)Spatial differences in the coupled coordination level and coordination efficiency of the two systems in each province were more evident.In seven provinces,including Heilongjiang,tourism industry development demonstrated a relatively high utilization rate and enhanced ice-snow tourism network attention.(3)The rankings of the coupled coordination degree and coordination efficiency of the two systems in each province remained relatively stable at the upper and lower ends,with large changes in the central provinces.The coupled coordination efficiency of Heilongjiang,Beijing,Jilin,and Shanghai remained at the top of the list steadily,whereas Xizang,Anhui,and Qinghai stayed at the bottom.In contrast,the ranking of the coupled coordination efficiency of Inner Mongolia,Henan,and Jiangsu displayed a great change.(4)The spatial correlation analysis revealed a positive correlation that decreased annually.Some provinces exhibited characteristics of spatial aggregation,with a high-high aggregation effect in Liaoning and Jilin,a low-low aggregation effect in Gansu and Qinghai,and no spatial aggregation effect in most other provinces. 展开更多
关键词 Ice-snow tourism Tourism industry development level network attention Coupled coordination
在线阅读 下载PDF
Exploring the Influence of Tourism Network Attention on the Development of Tourism in the Yangtze River Delta:A Spatial Analysis
3
作者 WANG Yuewei DI Jiao +1 位作者 CHEN Hang AN Lidan 《Journal of Resources and Ecology》 2025年第4期1103-1115,共13页
This study incorporates both positive and negative tourism network attention into a comprehensive framework to examine their distinct effects on tourism development in the Yangtze River Delta(YRD).In particular,this s... This study incorporates both positive and negative tourism network attention into a comprehensive framework to examine their distinct effects on tourism development in the Yangtze River Delta(YRD).In particular,this study uses a spatial econometric model to accurately examine the relationship between positive and negative tourism network attention and regional tourism development,including the impact of tourism network attention on local and neighboring areas.In addition,the framework also uses fuzzy set qualitative comparative analysis(fsQCA)to explore the path combination of network attention and other factors that affect varied stages of tourism development in each city of the YRD,and expounds its driving mechanism.Research findings reveal:(1)Positive tourism network attention has a“U-shaped”influence on regional tourism development.(2)Positive tourism network attention significantly promotes tourism development of both local and neighboring areas,while negative tourism network attention both hinders local tourism development and adversely affects neighboring areas via spillover effects.(3)Multiple paths for tourism development exist in the region,including four modes:Demand-facility driven,demand-resource-facility-transportation driven,word of mouth-transportation driven,and traffic-resource driven.Using the YRD as a case study,this research offers empirical evidence and theoretical insights into how positive and negative tourism network attention influence tourism development in the region. 展开更多
关键词 spatial effect network attention regional tourism fsQCA
原文传递
Feature pyramid attention network for audio-visual scene classification 被引量:1
4
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
A multi-source mixed-frequency information fusion framework based on spatial-temporal graph attention network for anomaly detection of catalyst loss in FCC regenerators
5
作者 Chunmeng Zhu Nan Liu +3 位作者 Ludong Ji Yunpeng Zhao Xiaogang Shi Xingying Lan 《Chinese Journal of Chemical Engineering》 2025年第8期47-59,共13页
Anomaly fluctuations in operating conditions, catalyst wear, crushing, and the deterioration of feedstock properties in fluid catalytic cracking (FCC) units can disrupt the normal circulating fluidization process of t... Anomaly fluctuations in operating conditions, catalyst wear, crushing, and the deterioration of feedstock properties in fluid catalytic cracking (FCC) units can disrupt the normal circulating fluidization process of the catalyst. Although several effective models have been proposed in previous research to address anomaly detection in chemical processes, most fail to adequately capture the spatial-temporal dependencies of multi-source, mixed-frequency information. In this study, an innovative multi-source mixed-frequency information fusion framework based on a spatial-temporal graph attention network (MIF-STGAT) is proposed to investigate the causes of FCC regenerator catalyst loss anomalies for guide onsite operational management, enhancing the long-term stability of FCC unit operations. First, a reconstruction-based dual-encoder-decoder framework is developed to facilitate the acquisition of mixed-frequency features and information fusion during the FCC regenerator catalyst loss process. Subsequently, a graph attention network and a multilayer long short-term memory network with a differential structure are integrated into the reconstruction-based dual-encoder-shared-decoder framework to capture the dynamic fluctuations and critical features associated with anomalies. Experimental results from the Chinese FCC industrial process demonstrate that MIF-STGAT achieves excellent accuracy and interpretability for anomaly detection. 展开更多
关键词 Chemical processes Deep learning Anomaly detection Mixed-frequency Non-stationary Graph attention network
在线阅读 下载PDF
Dynamic Interaction-Aware Trajectory Prediction with Bidirectional Graph Attention Network
6
作者 Jun Li Kai Xu +4 位作者 Baozhu Chen Xiaohan Yang Mengting Sun Guojun Li HaoJie Du 《Computers, Materials & Continua》 2025年第11期3349-3368,共20页
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte... Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability. 展开更多
关键词 Pedestrian trajectory prediction spatio-temporal modeling bidirectional graph attention network autonomous system
在线阅读 下载PDF
CFGANLDA:A Collaborative Filtering and Graph Attention Network-Based Method for Predicting Associations between lncRNAs and Diseases
7
作者 Dang Hung Tran Van Tinh Nguyen 《Computers, Materials & Continua》 2025年第6期4679-4698,共20页
It is known that long non-coding RNAs(lncRNAs)play vital roles in biological processes and contribute to the progression,development,and treatment of various diseases.Obviously,understanding associations between disea... It is known that long non-coding RNAs(lncRNAs)play vital roles in biological processes and contribute to the progression,development,and treatment of various diseases.Obviously,understanding associations between diseases and lncRNAs significantly enhances our ability to interpret disease mechanisms.Nevertheless,the process of determining lncRNA-disease associations is costly,labor-intensive,and time-consuming.Hence,it is expected to foster computational strategies to uncover lncRNA-disease relationships for further verification to save time and resources.In this study,a collaborative filtering and graph attention network-based LncRNA-Disease Association(CFGANLDA)method was nominated to expose potential lncRNA-disease associations.First,it takes into account the advantages of using biological information from multiple sources.Next,it uses a collaborative filtering technique in order to address the sparse data problem.It also employs a graph attention network to reinforce both linear and non-linear features of the associations to advance prediction performance.The computational results indicate that CFGANLDA gains better prediction performance compared to other state-of-the-art approaches.The CFGANLDA’s area under the receiver operating characteristic curve(AUC)metric is 0.9835,whereas its area under the precision-recall curve(AUPR)metric is 0.9822.Statistical analysis using 10-fold cross-validation experiments proves that these metrics are significant.Furthermore,three case studies on prostate,liver,and stomach cancers attest to the validity of CFGANLDA performance.As a result,CFGANLDA method proves to be a valued tool for lncRNA-disease association prediction. 展开更多
关键词 LncRNA-disease associations collaborative filtering principal component analysis graph attention network deep learning
在线阅读 下载PDF
A Novel Approach Based on Graph Attention Networks for Fruit Recognition
8
作者 Dat Tran-Anh Hoai Nam Vu 《Computers, Materials & Continua》 2025年第2期2703-2722,共20页
Counterfeit agricultural products pose a significant challenge to global food security and economic stability, necessitating advanced detection mechanisms to ensure authenticity and quality. To address this pressing i... Counterfeit agricultural products pose a significant challenge to global food security and economic stability, necessitating advanced detection mechanisms to ensure authenticity and quality. To address this pressing issue, we introduce iGFruit, an innovative model designed to enhance the detection of counterfeit agricultural products by integrating multimodal data processing. Our approach utilizes both image and text data for comprehensive feature extraction, employing advanced backbone models such as Vision Transformer (ViT), Normalizer-Free Network (NFNet), and Bidirectional Encoder Representations from Transformers (BERT). These extracted features are fused and processed using a Graph Attention Network (GAT) to capture intricate relationships within the multimodal data. The resulting fused representation is subsequently classified to detect counterfeit products with high precision. We validate the effectiveness of iGFruit through extensive experiments on two datasets: the publicly available MIT-States dataset and the proprietary TLU-States dataset, achieving state-of-the-art performance on both benchmarks. Specifically, iGFruit demonstrates an improvement of over 3% in average accuracy compared to baseline models, all while maintaining computational efficiency during inference. This work underscores the necessity and innovativeness of integrating graph-based feature learning to tackle the critical issue of counterfeit agricultural product detection. 展开更多
关键词 Fruit recognition graph attention network multi-feature processing
在线阅读 下载PDF
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
9
作者 Zhen-Yu Chen Feng-Chi Liu +2 位作者 Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 《Computers, Materials & Continua》 2025年第3期4287-4300,共14页
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l... In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure. 展开更多
关键词 Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network
在线阅读 下载PDF
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
10
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
The effect of moxibustion on cognitive attention network function of patients with mild cognitive impairment 被引量:6
11
作者 Gang LIU Lei MA +5 位作者 Tong-he MIAO Jian-jian SUN Jia-jia WANG Kai WANG Qing-ping ZHANG Jun YANG 《World Journal of Acupuncture-Moxibustion》 CSCD 2020年第4期262-267,共6页
Objective:To explore the effect differences between moxibustion and donepezil hydrochloride on the attention network function of patients with mild cognitive impairment(MCI).Methods:A total of 64 patients of MCI were ... Objective:To explore the effect differences between moxibustion and donepezil hydrochloride on the attention network function of patients with mild cognitive impairment(MCI).Methods:A total of 64 patients of MCI were randomly divided into the moxibustion group and donepezil hydrochloride group,32 cases in each one.On the basis of conventional treatment,the patients in the moxibustion group were given moxibustion,6 times a week,and the patients in the donepezil hydrochloride group were given donepezil hydrochloride orally,5 mg/day.The course of treatment was 60 days for both of the groups.Cognitive attention network function and activities of daily living(ADL)score were examined before and after treatment.Results:The differences of alerting reaction time(RT),executive control RT,overall mean RT and accuracy of the moxibustion group after treatment were significantly higher than those of the donepezil hydrochloride group[alert:(60.3±3.3)ms vs(48.3±3.7)ms,P<0.05;executive control:(81.2±3.2)ms vs(91.7±4.2)ms,P<0.05;total reaction time:(500.4±17.2)ms vs(536.2±20.1)ms.P<0.05;accuracy:(83.7±4.6)%vs(77.4±4.3)%,P<0.05].After treatment,the ADL scores of the both groups were significantly higher than those before treatment[the moxibustion group:(56.47±4.02)points vs(41.53±4.06)points,P<0.05;the donepezil hydrochloride group:(50.75±4.05)points vs(40.84±3.67)points,P<0.05],and the ADL score of the moxibustion group was significantly higher than that of the donepezil hydrochloride group[(56.47±4.02)points vs(50.75±4.05)points,P<0.05].Conclusion:Compared with donepezil hydrochloride,moxibustion has a better effect on the cognitive function of MCI patients. 展开更多
关键词 MOXIBUSTION Mild cognitive impairment attention network test
原文传递
Facial Expression Recognition Using Enhanced Convolution Neural Network with Attention Mechanism 被引量:5
12
作者 K.Prabhu S.SathishKumar +2 位作者 M.Sivachitra S.Dineshkumar P.Sathiyabama 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期415-426,共12页
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav... Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images. 展开更多
关键词 Facial expression recognition linear discriminant analysis animal migration optimization regions of interest enhanced convolution neural network with attention mechanism
在线阅读 下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:6
13
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 Multi-step traffic flow prediction Graph convolutional network External factors attentional encoder network Spatiotemporal correlation
在线阅读 下载PDF
A Novel Parameter-Optimized Recurrent Attention Network for Pipeline Leakage Detection 被引量:3
14
作者 Tong Sun Chuang Wang +2 位作者 Hongli Dong Yina Zhou Chuang Guan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1064-1076,共13页
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing... Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD. 展开更多
关键词 attention mechanism(AM) long shortterm memory(LSTM) parameter-optimized recurrent attention network(PRAN) particle swarm optimization(PSO) pipeline leakage detection(PLD)
在线阅读 下载PDF
Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network 被引量:2
15
作者 Qi Guo Shujun Zhang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1653-1670,共18页
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora... Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset. 展开更多
关键词 Continuous sign language recognition graph attention network bidirectional long short-term memory connectionist temporal classification
在线阅读 下载PDF
Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network 被引量:1
16
作者 Yuying Huo Yilang Guo +4 位作者 Jiakang Wang Huijie Xue Yujuan Feng Weizheng Chen Xiangyu Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2023年第9期720-733,共14页
Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and compl... Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvironment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git). 展开更多
关键词 Spatialtranscriptomics Spatial domaindetection Multi-modal integration Graph attention network
原文传递
Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network 被引量:1
17
作者 Zhihong Lin Zeng Zeng +3 位作者 Yituan Yu Yinlin Ren Xuesong Qiu Jinqian Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期1641-1665,共25页
For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service... For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states. 展开更多
关键词 Time-sensitive network deep reinforcement learning graph attention network fault tolerance
在线阅读 下载PDF
Air Pollution Prediction Via Graph Attention Network and Gated Recurrent Unit 被引量:1
18
作者 Shun Wang Lin Qiao +3 位作者 Wei Fang Guodong Jing Victor S.Sheng Yong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第10期673-687,共15页
PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants ... PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants can spread in the earth’s atmosphere,causing mutual influence between different cities.To effectively capture the air pollution relationship between cities,this paper proposes a novel spatiotemporal model combining graph attention neural network(GAT)and gated recurrent unit(GRU),named GAT-GRU for PM2.5 concentration prediction.Specifically,GAT is used to learn the spatial dependence of PM2.5 concentration data in different cities,and GRU is to extract the temporal dependence of the long-term data series.The proposed model integrates the learned spatio-temporal dependencies to capture long-term complex spatio-temporal features.Considering that air pollution is related to the meteorological conditions of the city,the knowledge acquired from meteorological data is used in the model to enhance PM2.5 prediction performance.The input of the GAT-GRU model consists of PM2.5 concentration data and meteorological data.In order to verify the effectiveness of the proposed GAT-GRU prediction model,this paper designs experiments on real-world datasets compared with other baselines.Experimental results prove that our model achieves excellent performance in PM2.5 concentration prediction. 展开更多
关键词 Air pollution prediction deep learning spatiotemporal data modeling graph attention network
在线阅读 下载PDF
DHSEGATs:distance and hop-wise structures encoding enhanced graph attention networks 被引量:1
19
作者 HUANG Zhiguo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期350-359,共10页
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi... Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result. 展开更多
关键词 graph attention network(GAT) graph structure information label propagation
在线阅读 下载PDF
Location Prediction from Social Media Contents using Location Aware Attention LSTM Network 被引量:1
20
作者 Madhur Arora Sanjay Agrawal Ravindra Patel 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期68-77,共10页
Location prediction in social media,a growing research field,employs machine learning to identify users' locations from their online activities.This technology,useful in targeted advertising and urban planning,rel... Location prediction in social media,a growing research field,employs machine learning to identify users' locations from their online activities.This technology,useful in targeted advertising and urban planning,relies on natural language processing to analyze social media content and understand the temporal dynamics and structures of social networks.A key application is predicting a Twitter user's location from their tweets,which can be challenging due to the short and unstructured nature of tweet text.To address this challenge,the research introduces a novel machine learning model called the location-aware attention LSTM(LAA-LSTM).This hybrid model combines a Long Short-Term Memory(LSTM) network with an attention mechanism.The LSTM is trained on a dataset of tweets,and the attention network focuses on extracting features related to latitude and longitude,which are crucial for pinpointing the location of a user's tweet.The result analysis shows approx.10% improvement in accuracy over other existing machine learning approaches. 展开更多
关键词 TWITTER social media LOCATION machine learning attention network
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部