期刊文献+
共找到551,659篇文章
< 1 2 250 >
每页显示 20 50 100
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
1
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 Graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection
2
作者 Zheng Zhang Jie Hao +2 位作者 Liquan Chen Tianhao Hou Yanan Liu 《Computers, Materials & Continua》 2026年第1期1119-1140,共22页
With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion det... With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion detection models,this paper proposes a Dual-Attention model for NID,which combines Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)to design two modules:the FocusConV and the TempoNet module.The FocusConV module,which automatically adjusts and weights CNN extracted local features,focuses on local features that are more important for intrusion detection.The TempoNet module focuses on global information,identifies more important features in time steps or sequences,and filters and weights the information globally to further improve the accuracy and robustness of NID.Meanwhile,in order to solve the class imbalance problem in the dataset,the EQL v2 method is used to compute the class weights of each class and to use them in the loss computation,which optimizes the performance of the model on the class imbalance problem.Extensive experiments were conducted on the NSL-KDD,UNSW-NB15,and CIC-DDos2019 datasets,achieving average accuracy rates of 99.66%,87.47%,and 99.39%,respectively,demonstrating excellent detection accuracy and robustness.The model also improves the detection performance of minority classes in the datasets.On the UNSW-NB15 dataset,the detection rates for Analysis,Exploits,and Shellcode attacks increased by 7%,7%,and 10%,respectively,demonstrating the Dual-Attention CNN-BiLSTM model’s excellent performance in NID. 展开更多
关键词 network intrusion detection class imbalance problem deep learning
在线阅读 下载PDF
融合注意力增强CNN与Transformer的电网关键节点识别
3
作者 黎海涛 乔禄 +2 位作者 杨艳红 谢冬雪 高文浩 《北京工业大学学报》 北大核心 2026年第2期117-129,共13页
为了精确识别电网关键节点以保障电力系统的可靠运行,提出一种基于融合拓扑特征与电气特征的双重自注意力卷积神经网络(convolutional neural network,CNN)的电网关键节点识别方法。首先,构建包含节点的局部拓扑特征、半局部拓扑特征、... 为了精确识别电网关键节点以保障电力系统的可靠运行,提出一种基于融合拓扑特征与电气特征的双重自注意力卷积神经网络(convolutional neural network,CNN)的电网关键节点识别方法。首先,构建包含节点的局部拓扑特征、半局部拓扑特征、电气距离及节点电压的多维特征集;然后,利用压缩-激励(squeeze-and-excitation,SE)自注意力机制改进CNN以增强对节点特征的提取能力,并引入多头自注意力的Transformer编码器以实现拓扑特征与电气特征的深度融合。结果表明:在IEEE 30节点和IEEE 118节点的标准测试系统上,该方法识别关键节点的准确性更高,并且在节点影响力评估和网络鲁棒性方面,得到的电网关键节点对网络的影响更大,鲁棒性更好,为电网的安全稳定运行提供了有效的决策支持。 展开更多
关键词 复杂网络 电网 关键节点识别 卷积神经网络(convolutional neural network cnn) 注意力 特征融合
在线阅读 下载PDF
基于CNN-LSTM方法的液环泵非稳态流场预测分析
4
作者 张人会 唐玉 +1 位作者 郭广强 陈学炳 《农业机械学报》 北大核心 2026年第1期273-279,共7页
为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,... 为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,利用卷积神经网络(CNN)对流场快照进行特征提取,并结合长短期记忆神经网络(LSTM)构建时间序列神经网络预测模型,预测结果与CFD数值模拟结果进行对比,分析表明,CNN-LSTM模型能够实现对未来时刻非稳态流场的高精度预测;相态场、压力场、温度场的预测结果平均相对误差分别为1.37%、1.28%、1.78%;在利用LSTM预测壳体及进口压力脉动时,在样本集之后叶轮旋转360°时间上平均相对误差分别为1.61%、0.09%、0.20%。在样本空间外的预测集上,CNN-LSTM的预测性能优于本征正交分解(POD)方法,尽管在外延时间序列上的预测精度随时间增加逐渐下降,但在整个时间历程上保持了较好的预测精度,在预测内流场结果方面具有显著优势。 展开更多
关键词 液环泵 非稳态流场 卷积神经网络 长短期记忆神经网络
在线阅读 下载PDF
基于CNN-BiLSTM-SSA的锅炉再热器壁温预测模型
5
作者 徐世明 何至谦 +6 位作者 彭献永 商忠宝 范景玮 王俊略 曲舒杨 刘洋 周怀春 《动力工程学报》 北大核心 2026年第1期121-130,共10页
针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成... 针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成分变量作为模型的最终输入。其次,考虑利用CNN捕捉局部相关性,BiLSTM学习数据的长期序列依赖性的优势,使用卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)捕捉时序数据中的短期和长期依赖关系,引入稀疏自注意力SSA机制,通过为不同特征部分分配自适应权重,从而增强CNN-BiLSTM模型的特征提取与建模能力,最后利用在役1000 MW超超临界锅炉的历史数据进行仿真实验。结果表明:CNN-BiLSTM-SSA模型在高温再热器壁温预测中的均方根误差(RMSE)、平均绝对误差(MAE)及平均绝对百分比误差(MAPE)分别为4.92℃、3.81℃和0.6241%,相应的指标均优于CNN、LSTM、BiLSTM、CNN-LSTM和CNN-BiLSTM模型。 展开更多
关键词 再热器壁温软测量 深度学习 卷积神经网络 长短期记忆网络 注意力机制 核主成分分析 cnn-BiLSTM
在线阅读 下载PDF
Development and application of an intelligent thermal state monitoring system for sintering machine tails based on CNN-LSTM hybrid neural networks 被引量:1
6
作者 Da-lin Xiong Xin-yu Zhang +3 位作者 Zheng-wei Yu Xue-feng Zhang Hong-ming Long Liang-jun Chen 《Journal of Iron and Steel Research International》 2025年第1期52-63,共12页
Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiv... Real-time prediction and precise control of sinter quality are pivotal for energy saving,cost reduction,quality improvement and efficiency enhancement in the ironmaking process.To advance,the accuracy and comprehensiveness of sinter quality prediction,an intelligent flare monitoring system for sintering machine tails that combines hybrid neural networks integrating convolutional neural network with long short-term memory(CNN-LSTM)networks was proposed.The system utilized a high-temperature thermal imager for image acquisition at the sintering machine tail and employed a zone-triggered method to accurately capture dynamic feature images under challenging conditions of high-temperature,high dust,and occlusion.The feature images were then segmented through a triple-iteration multi-thresholding approach based on the maximum between-class variance method to minimize detail loss during the segmentation process.Leveraging the advantages of CNN and LSTM networks in capturing temporal and spatial information,a comprehensive model for sinter quality prediction was constructed,with inputs including the proportion of combustion layer,porosity rate,temperature distribution,and image features obtained from the convolutional neural network,and outputs comprising quality indicators such as underburning index,uniformity index,and FeO content of the sinter.The accuracy is notably increased,achieving a 95.8%hit rate within an error margin of±1.0.After the system is applied,the average qualified rate of FeO content increases from 87.24%to 89.99%,representing an improvement of 2.75%.The average monthly solid fuel consumption is reduced from 49.75 to 46.44 kg/t,leading to a 6.65%reduction and underscoring significant energy saving and cost reduction effects. 展开更多
关键词 Sinter quality Convolutional neural network Long short-term memory Image segmentation FeO prediction
原文传递
xCViT:Improved Vision Transformer Network with Fusion of CNN and Xception for Skin Disease Recognition with Explainable AI
7
作者 Armughan Ali Hooria Shahbaz Robertas Damaševicius 《Computers, Materials & Continua》 2025年第4期1367-1398,共32页
Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead t... Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tumor advancement.This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis,with an architecture that integrates a Vision Transformer,a bespoke convolutional neural network(CNN),and an Xception module.They were evaluated using two benchmark datasets,HAM10000 and Skin Cancer ISIC.On the HAM10000,the model achieves a precision of 95.46%,an accuracy of 96.74%,a recall of 96.27%,specificity of 96.00%and an F1-Score of 95.86%.It obtains an accuracy of 93.19%,a precision of 93.25%,a recall of 92.80%,a specificity of 92.89%and an F1-Score of 93.19%on the Skin Cancer ISIC dataset.The findings demonstrate that the model that was proposed is robust and trustworthy when it comes to the classification of skin lesions.In addition,the utilization of Explainable AI techniques,such as Grad-CAM visualizations,assists in highlighting the most significant lesion areas that have an impact on the decisions that are made by the model. 展开更多
关键词 Skin lesions vision transformer cnn Xception deep learning network fusion explainable AI Grad-CAM skin cancer detection
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
8
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
9
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
基于多维故障特征提取的CNN-BiGRU-ATT多分支配电网故障定位
10
作者 张玉敏 王德龙 +4 位作者 张晓 吉兴全 张祥星 黄心月 王学林 《中国电力》 北大核心 2026年第1期163-174,共12页
针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention m... 针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention mechanism,ATT)多分支配电网故障定位方法。首先,分析不同故障位置和故障分支的行波特性,采用基于直线检测(line segment detector,LSD)的波头标定方法提取故障波头的坐标、幅值和斜率等信息,利用主成分分析法(principal component analysis,PCA)构造与故障位置成映射关系的多维故障特征空间;其次,构建CNN-BiGRU-ATT故障定位模型,深入挖掘时序特征和幅值特征与故障位置之间的关联;最后,结合分类与回归任务,分别实现故障区段定位与精准定位。在有限样本的情况下,区段定位准确率达99.6429%,精准定位误差55.77 m,跨工况误差最低2.95 m。结果表明,该模型能有效关联多维故障特征与故障信息,较对比模型具有更优的故障定位精度稳定性与场景泛化能力。 展开更多
关键词 故障定位 多分支配电网 LSD 多维故障特征 cnn-BiGRU-ATT
在线阅读 下载PDF
TLCNN:Tabular data-based lightweight convolutional neural network for electricity energy demand prediction
11
作者 Nazmul Huda Badhon Imrus Salehin +3 位作者 Md Tomal Ahmed Sajib Md Sakibul Hassan Rifat S.M.Noman Nazmun Nessa Moon 《Global Energy Interconnection》 2025年第6期1010-1029,共20页
Forecasting energy demand is essential for optimizing energy generation and effectively predicting power system needs.Recently,many researchers have developed various models on tabular datasets to enhance the effectiv... Forecasting energy demand is essential for optimizing energy generation and effectively predicting power system needs.Recently,many researchers have developed various models on tabular datasets to enhance the effectiveness of demand prediction,including neural networks,machine learning,deep learning,and advanced architectures such as CNN and LSTM.However,research on the CNN models has struggled to provide reliable outcomes due to insufficient dataset sizes,repeated investigations,and inappropriate baseline selection.To address these challenges,we propose a Tabular data-based Lightweight Convolutional Neural Network(TLCNN)model for predicting energy demand.It frames the problem as a regression task that effectively captures complex data trends for accurate forecasting.The BanE-16 dataset is preprocessed using normalization techniques for categorical and numerical data before training the model.The proposed approach dynamically selects relevant features through a two-dimensional convolutional structure that improves adaptability.The model’s performance is evaluated using MSE,MAE,and Accuracy metrics.Experimental results show that TLCNN achieves a 10.89%lower MSE than traditional ML algorithms,demonstrating superior predictive capability.Additionally,TLCNN’s lightweight structure enhances generalization while reducing computational costs,making it suitable for real-world energy forecasting tasks.This study contributes to energy informatics by introducing an optimized deep-learning framework that improves demand prediction by ensuring robustness and adaptability for tabular data. 展开更多
关键词 cnn Tabular data ENERGY Deep learning ELECTRICITY
在线阅读 下载PDF
面向可重构结构的CNN模型混合压缩方法
12
作者 刘朋飞 蒋林 +1 位作者 李远成 吴海 《现代电子技术》 北大核心 2026年第1期167-173,共7页
随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波... 随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波器剪枝、基于阈值的全连接层权值剪枝和混合精度自适应量化策略,来减少模型参数量和计算复杂度,并部署在自研的可重构处理器上。实验结果表明,所提方法在VGG16和ResNet18模型上分别实现了31.4倍和7.9倍的压缩比,精度仅下降1.20%和0.74%。在基于VirtexUltraScale VU440 FPGA开发板搭建的可重构阵列处理器上,压缩后的VGG16模型执行周期最大降低了62.7%。证明所提方法适合资源有限的边缘计算设备。 展开更多
关键词 卷积神经网络 模型压缩 结构化剪枝 自适应量化 并行计算 可重构结构
在线阅读 下载PDF
基于CNN二维和三维图像特征融合的路面裂缝分割研究
13
作者 邱欣 张霆锋 +1 位作者 陶珏强 梁毅 《浙江师范大学学报(自然科学版)》 2026年第1期33-44,共12页
精准的路面病害检测是开展高效路面养护管理的必要前提.针对现有路面病害检测方法存在精度不足、易受噪声干扰等问题,提出一种基于二维灰度图像与三维深度图像特征融合的卷积神经网络路面病害检测方法.首先依托线结构光路面信息采集系统... 精准的路面病害检测是开展高效路面养护管理的必要前提.针对现有路面病害检测方法存在精度不足、易受噪声干扰等问题,提出一种基于二维灰度图像与三维深度图像特征融合的卷积神经网络路面病害检测方法.首先依托线结构光路面信息采集系统,同步获取灰度图像与深度图像数据,并完成数据预处理与标注;继而结合图像数据特性,设计2种基于Res2Net架构的网络模型——双通道模型与双编码器模型,并在模型中嵌入注意力机制模块以优化裂缝分割的类别不平衡问题;最后针对不同类型路面病害开展定量分析.实验结果表明,多模态图像(灰度+深度)融合模型可使检测精度显著提升,平均交并比(MIoU)较基准提升了5.48%,达到82.96%,为道路养护的工程应用提供了参考. 展开更多
关键词 卷积神经网络 多模态 路面裂缝检测 图像分割
在线阅读 下载PDF
Robust Skin Cancer Detection through CNN-Transformer-GRU Fusion and Generative Adversarial Network Based Data Augmentation
14
作者 Alex Varghese Achin Jain +7 位作者 Mohammed Inamur Rahman Mudassir Khan Arun Kumar Dubey Iqrar Ahmed Yash Prakash Narayan Arvind Panwar Anurag Choubey Saurav Mallik 《Computer Modeling in Engineering & Sciences》 2025年第8期1767-1791,共25页
Skin cancer remains a significant global health challenge,and early detection is crucial to improving patient outcomes.This study presents a novel deep learning framework that combines Convolutional Neural Networks(CN... Skin cancer remains a significant global health challenge,and early detection is crucial to improving patient outcomes.This study presents a novel deep learning framework that combines Convolutional Neural Networks(CNNs),Transformers,and Gated Recurrent Units(GRUs)for robust skin cancer classification.To address data set imbalance,we employ StyleGAN3-based synthetic data augmentation alongside traditional techniques.The hybrid architecture effectively captures both local and global dependencies in dermoscopic images,while the GRU component models sequential patterns.Evaluated on the HAM10000 dataset,the proposed model achieves an accuracy of 90.61%,outperforming baseline architectures such as VGG16 and ResNet.Our system also demonstrates superior precision(91.11%),recall(95.28%),and AUC(0.97),highlighting its potential as a reliable diagnostic tool for the detection of melanoma.This work advances automated skin cancer diagnosis by addressing critical challenges related to class imbalance and limited generalization in medical imaging. 展开更多
关键词 Skin cancer detection deep learning cnn TRANSFORMER GRU StyleGAN3
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
15
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
3D Enhanced Residual CNN for Video Super-Resolution Network
16
作者 Weiqiang Xin Zheng Wang +3 位作者 Xi Chen Yufeng Tang Bing Li Chunwei Tian 《Computers, Materials & Continua》 2025年第11期2837-2849,共13页
Deep convolutional neural networks(CNNs)have demonstrated remarkable performance in video super-resolution(VSR).However,the ability of most existing methods to recover fine details in complex scenes is often hindered ... Deep convolutional neural networks(CNNs)have demonstrated remarkable performance in video super-resolution(VSR).However,the ability of most existing methods to recover fine details in complex scenes is often hindered by the loss of shallow texture information during feature extraction.To address this limitation,we propose a 3D Convolutional Enhanced Residual Video Super-Resolution Network(3D-ERVSNet).This network employs a forward and backward bidirectional propagation module(FBBPM)that aligns features across frames using explicit optical flow through lightweight SPyNet.By incorporating an enhanced residual structure(ERS)with skip connections,shallow and deep features are effectively integrated,enhancing texture restoration capabilities.Furthermore,3D convolution module(3DCM)is applied after the backward propagation module to implicitly capture spatio-temporal dependencies.The architecture synergizes these components where FBBPM extracts aligned features,ERS fuses hierarchical representations,and 3DCM refines temporal coherence.Finally,a deep feature aggregation module(DFAM)fuses the processed features,and a pixel-upsampling module(PUM)reconstructs the high-resolution(HR)video frames.Comprehensive evaluations on REDS,Vid4,UDM10,and Vim4 benchmarks demonstrate well performance including 30.95 dB PSNR/0.8822 SSIM on REDS and 32.78 dB/0.8987 on Vim4.3D-ERVSNet achieves significant gains over baselines while maintaining high efficiency with only 6.3M parameters and 77ms/frame runtime(i.e.,20×faster than RBPN).The network’s effectiveness stems from its task-specific asymmetric design that balances explicit alignment and implicit fusion. 展开更多
关键词 Video super-resolution 3D convolution enhanced residual cnn spatio-temporal feature extraction
在线阅读 下载PDF
基于改进CNN的煤矿掘进工作面超前探测异常体识别方法
17
作者 原野 《煤矿现代化》 2026年第1期162-165,共4页
煤矿掘进工作面超前探测中,异常体识别的探测技术存在局限性,导致精度不足。传统的探测方法,如某些物理探测手段,受巷道空间的限制,其探测范围和精度相对有限。在处理复杂地质条件时,无法准确识别异常体的位置和形态。为此,开展基于改... 煤矿掘进工作面超前探测中,异常体识别的探测技术存在局限性,导致精度不足。传统的探测方法,如某些物理探测手段,受巷道空间的限制,其探测范围和精度相对有限。在处理复杂地质条件时,无法准确识别异常体的位置和形态。为此,开展基于改进卷积神经网络(CNN)的识别方法研究。通过预处理声波远距离超前物探数据,包括去噪、增强和归一化等步骤,提升数据质量。利用基于改进CNN的模型对探测图像进行异常体特征提取,该模型通过优化卷积层、引入注意力机制和调整超参数,有效提高了特征提取的准确性和鲁棒性。最后,基于提取的特征向量,采用SVM分类器实现异常体的识别分类。通过对比实验证明,该方法相较于现有方法在异常体识别准确率和效率有显著提升。 展开更多
关键词 改进cnn 掘进 超前探测 异常体识别
在线阅读 下载PDF
基于CNN与格栅优化的输变电工程造价趋势预测研究
18
作者 孙永彦 丁艳 +1 位作者 叶慧男 王天佑 《粘接》 2026年第2期552-555,共4页
设计要求的严格与多变常导致工程造价的增加,进而使评价指标不稳定。为此,提出采用卷积神经网络(Convolutional Neural Network,CNN)与格栅优化的输变电工程造价趋势预测方法。首先,利用数学方法估算输变电工程造价成本,并获取相应的造... 设计要求的严格与多变常导致工程造价的增加,进而使评价指标不稳定。为此,提出采用卷积神经网络(Convolutional Neural Network,CNN)与格栅优化的输变电工程造价趋势预测方法。首先,利用数学方法估算输变电工程造价成本,并获取相应的造价数据,对原始造价数据进行标准化处理,选取施工造价的预测评价指标,利用熵权法筛选特征,随后计算施工造价指标的特征相似度,构建神经网络预测模型,并引入均方误差(MSE)作为损失函数进行训练,从而建立了输变电工程造价预测模型。基于CNN特征提取与格栅优化算法计算关联度,以预测输变电工程造价趋势,最后,采用均值强化算法对造价数据进行平均化处理,所得平均值即为最终的工程造价预测值。 展开更多
关键词 输变电工程 造价预测 cnn 格栅优化 特征提取
在线阅读 下载PDF
Fluorescence microscopy image denoising via a wavelet-enhanced transformer based on DnCNN network
19
作者 Shuhao Shen Mingxuan Cao +2 位作者 Weikai Tan E Du Xueli Chen 《Advanced Photonics Nexus》 2025年第6期1-11,共11页
Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN th... Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN that fuses wavelet preprocessing with a dual-branch transformer-convolutional neural network(CNN)architecture.Wavelet decomposition separates highand low-frequency components for targeted noise reduction;the CNN branch restores local details,whereas the transformer branch captures global context;and an adaptive loss balances quantitative fidelity with perceptual quality.On the fluorescence microscopy denoising benchmark,our method surpasses leading CNNand transformer-based approaches,improving peak signal-to-noise ratio by 2.34%and 0.88%and structural similarity index measure by 0.53%and 1.07%,respectively.This framework offers enhanced generalization and practical gains for fluorescence image denoising. 展开更多
关键词 fluorescence microscopy denoising deep learning wavelet transform vision transformer convolutional neural network.
在线阅读 下载PDF
SVSNet:Scleral vessel segmentation with a CNN-Transformer hybrid network
20
作者 Hantao Bai Zongqing Ma +1 位作者 Chuxiang Gao Jiang Zhu 《Journal of Innovative Optical Health Sciences》 2025年第6期107-123,共17页
Scleral vessels on the surface of the human eye can provide valuable information about potential diseases or dysfunctions of specific organs,and vessel segmentation is a key step in characterizing the scleral vessels.... Scleral vessels on the surface of the human eye can provide valuable information about potential diseases or dysfunctions of specific organs,and vessel segmentation is a key step in characterizing the scleral vessels.However,accurate segmentation of blood vessels in the scleral images is a challenging task due to the intricate texture,tenuous structure,and erratic network of the scleral vessels.In this work,we propose a CNN-Transformer hybrid network named SVSNet for automatic scleral vessel segmentation.Following the typical U-shape encoder-decoder architecture,the SVSNet integrates a Sobel edge detection module to provide edge prior and further combines the Atrous Spatial Pyramid Pooling module to enhance its ability to extract vessels of various sizes.At the end of the encoding path,a vision Transformer module is incorporated to capture the global context and improve the continuity of the vessel network.To validate the effectiveness of the proposed SVSNet,comparative experiments are conducted on two public scleral image datasets,and the results show that the SVSNet outperforms other state-of-the-art models.Further experiments on three public retinal image datasets demonstrate that the SVSNet can be easily applied to other vessel datasets with good generalization capability. 展开更多
关键词 Image segmentation vision Transformer convolutional neural network multi-scale feature fusion scleral image
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部