期刊文献+
共找到41,454篇文章
< 1 2 250 >
每页显示 20 50 100
基于多尺度特征提取的U-Net网络微地震定位方法
1
作者 黄建平 王秋阳 +6 位作者 李媛媛 黎国龙 苏来源 路依霖 李三福 段文胜 雷刚林 《中国石油大学学报(自然科学版)》 北大核心 2026年第1期1-11,共11页
微地震定位是微地震监测的核心任务,面对当前海量的地震数据,传统的定位方法已无法满足实时定位的需求。为此,利用深度学习技术,提出一种基于U-Net网络为主要架构的微地震震源定位方法,通过融合双交叉注意力模块和空间空洞金字塔池化模... 微地震定位是微地震监测的核心任务,面对当前海量的地震数据,传统的定位方法已无法满足实时定位的需求。为此,利用深度学习技术,提出一种基于U-Net网络为主要架构的微地震震源定位方法,通过融合双交叉注意力模块和空间空洞金字塔池化模块,增强网络对微震数据中波形特征的提取能力,提升震源位置预测精度。最后,利用简单层状和复杂速度模型生成合成数据进行实验测试,并与U-Net和Att-Unet网络对震源位置预测误差精度进行对比分析。结果表明,所构建的网络模型在震源预测精度以及网络性能上均优于其他网络模型,并且对低信噪比的微地震数据也有较好的预测效果。 展开更多
关键词 微震定位 水力压裂 多尺度特征提取 U-net网络 注意力机制
在线阅读 下载PDF
基于改进U-Net网络和知识蒸馏的三维断层识别方法
2
作者 王莉利 梁云虎 高新成 《石油物探》 北大核心 2026年第1期21-30,共10页
深度学习方法在三维地震资料断层识别中得到了广泛应用,但方法的应用面临数据集质量欠佳、资源消耗过高以及训练周期长等问题。为此,提出了一种融合改进U-Net网络和知识蒸馏的三维断层识别方法。该方法先将改进的U-Net网络模型作为教师... 深度学习方法在三维地震资料断层识别中得到了广泛应用,但方法的应用面临数据集质量欠佳、资源消耗过高以及训练周期长等问题。为此,提出了一种融合改进U-Net网络和知识蒸馏的三维断层识别方法。该方法先将改进的U-Net网络模型作为教师模型,将空洞空间金字塔池化(ASPP)结构与U-Net网络模型相融合,构建轻量级学生模型,然后引入知识蒸馏技术对学生模型进行优化,并调整网络训练超参数和知识蒸馏损失参数,使学生模型获取更丰富的断层信息,提升学生模型的网络性能。该方法通过将复杂的教师模型的知识迁移到轻量级学生模型,显著降低了模型的计算复杂度,同时保持了较高的识别精度。测试结果表明,在合成测试集和实际地震数据的断层识别中,经过知识蒸馏训练的学生模型在识别精度和连续性上均优于未经过蒸馏的学生模型和单独训练的教师模型,充分验证了方法的可行性和有效性。 展开更多
关键词 断层识别 知识蒸馏 U-net 教师模型 学生模型
在线阅读 下载PDF
cGAS-STING轴介导NET形成在痛风性关节炎中的机制研究
3
作者 谭悦 李兴锐 +3 位作者 刘童 陆继娣 余家静 王亚辉 《细胞与分子免疫学杂志》 北大核心 2026年第1期12-19,共8页
目的探讨环鸟苷酸-腺苷酸合成酶(cGAS)-干扰素基因刺激因子(STING)轴介导中性粒细胞外陷阱(NET)形成在痛风性关节炎(GA)中的机制。方法32只C57BL/6J小鼠随机分为4组,每组8只小鼠:假手术(Sham)组、GA组、GA联合RU.521组、GA和RU.521联合M... 目的探讨环鸟苷酸-腺苷酸合成酶(cGAS)-干扰素基因刺激因子(STING)轴介导中性粒细胞外陷阱(NET)形成在痛风性关节炎(GA)中的机制。方法32只C57BL/6J小鼠随机分为4组,每组8只小鼠:假手术(Sham)组、GA组、GA联合RU.521组、GA和RU.521联合MSA-2组。除Sham组踝关节内注射PBS缓冲液外,其他组踝关节内注射尿酸钠(MSU)晶体以诱导GA。从健康志愿者收集的外周血样品中提取中性粒细胞,将中性粒细胞分为对照(Con)组、MSU组、MSU联合RU.521组、MSU和RU.521联合MSA-2组。Con组露于PBS缓冲液中24 h,其他组中性粒细胞暴露于40μg/mL的MSU中24 h。通过免疫荧光染色分析踝关节组织和中性粒细胞中瓜氨酸组蛋白H3(CitH3)和髓过氧化物酶(MPO)表达。Western blot法检测踝关节组织和中性粒细胞中含pyrin结构域NOD样受体家族3(NLRP3)通路相关蛋白和cGAS-STING信号表达。通过ELISA检测踝关节组织和中性粒细胞上清液中肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)和IL-6水平。结果与Sham组小鼠相比,GA组小鼠的踝关节组织炎症介质(IL-1β、TNF-α和IL-6)浓度,NLRP3、凋亡相关颗粒样蛋白(ASC)、裂解的半胱氨酸天冬氨酸蛋白酶1(c-CASP1)蛋白表达,MPO、CitH3荧光强度显著升高,而RU.521治疗有效地降低了IL-1β、TNF-α、IL-6浓度,NLRP3、ASC、c-CASP1蛋白表达和MPO、CitH3荧光强度。与GA联合RU.521组相比,GA和RU.521联合MSA-2组小鼠踝关节组织中IL-1β、TNF-α、IL-6水平,NLRP3、ASC、c-CASP1蛋白表达,MPO、CitH3荧光强度均显著增加。与Con组相比,MSU组中性粒细胞中NLRP3、ASC、c-CASP1蛋白表达和MPO、CitH3荧光强度显著增加。MSU联合RU.521组中性粒细胞中NLRP3、ASC、c-CASP1蛋白表达和MPO、CitH3荧光强度较MSU组显著降低。与MSU联合RU.521组相比,MSU和RU.521联合MSA-2组中性粒细胞中NLRP3、ASC、c-CASP1、STING蛋白表达和MPO、CitH3荧光强度均显著增加。结论MSU晶体可能通过激活cGAS-STING信号通路促进NET的形成,并诱导炎症反应。因此,靶向cGAS-STING信号通路可能是抗GA治疗的一种有前景的策略。 展开更多
关键词 痛风性关节炎 环鸟苷酸-腺苷酸合成酶(cGAS) 干扰素基因刺激因子(STING) 中性粒细胞外陷阱(net) 尿酸钠晶体
原文传递
基于改进U-Net与RGB-D图像的青花椒枝条“下桩”剪切点定位
4
作者 蒲应俊 张文州 +3 位作者 李金广 赵立军 陈子文 杨明金 《农业工程学报》 北大核心 2026年第1期160-170,共11页
青花椒枝条“下桩”是通过剪下带鲜果的枝条并保留一定长度短桩的采摘收获方法。为实现青花椒采摘机器人精准识别枝条并确定最佳剪切点以达到高效“下桩”作业,该研究提出了一种基于U-Net深度学习网络和RGB-D相机相结合的青花椒主枝“... 青花椒枝条“下桩”是通过剪下带鲜果的枝条并保留一定长度短桩的采摘收获方法。为实现青花椒采摘机器人精准识别枝条并确定最佳剪切点以达到高效“下桩”作业,该研究提出了一种基于U-Net深度学习网络和RGB-D相机相结合的青花椒主枝“下桩”剪切点定位方法。首先,通过改进传统U-Net模型,将其主干网络替换为嵌入CA注意力机制的ResNet50网络,同时在U-Net模型的特征拼接阶段中增加SE注意力机制,从而构建针对青花椒主枝和树干的分割模型。然后,将分割后的图像利用二值化与骨架线提取方法得到主枝中心线,结合RGB-D相机的深度信息与OpenCV图像处理算法,完成世界坐标系与像素坐标系间长度的映射。随后,将短桩预设的40 mm长度从世界坐标系映射至RGB图像中的像素长度,最终确定每根主枝的“下桩”剪切点位置。试验结果表明,改进后的U-Net模型在分割性能上优于DeeplabV3+和PSPNet,平均交并比(MIoU)、平均像素准确率(mPA)和召回率(recall)分别达到87.58%、93.76%和96.24%。在晴天顺光、逆光及阴天条件下,“下桩”剪切点识别定位的成功率分别达到90.81%、84.88%、80.52%。采摘点定位试验中,定位成功率为90%,单根花椒枝平均识别过程耗时1.93 s。该研究结果可为青花椒采摘机器人“下桩”采收提供技术支撑。 展开更多
关键词 图像处理 青花椒 采摘 U-net网络模型 下桩采摘法 剪切点定位
在线阅读 下载PDF
基于级联YOLO和U-Net的腰椎图像分割模型YOLOMACR-Net
5
作者 何致远 汪灿华 《现代信息科技》 2026年第2期91-97,共7页
针对腰椎MRI图像中椎体目标形态多变、背景解剖结构复杂及组织间对比度低,导致现有方法出现关键结构漏检、边缘分割粗糙及参数冗余等问题,提出一种融合多尺度特征增强与级联架构的轻量化腰椎分割模型YOLOMACR-Net。首先,在YOLOv5n框架... 针对腰椎MRI图像中椎体目标形态多变、背景解剖结构复杂及组织间对比度低,导致现有方法出现关键结构漏检、边缘分割粗糙及参数冗余等问题,提出一种融合多尺度特征增强与级联架构的轻量化腰椎分割模型YOLOMACR-Net。首先,在YOLOv5n框架中设计多尺度非对称空洞残差模块(MACR),利用非对称卷积适配椎体几何特征,扩大感受野以解决单阶段检测的漏检问题;其次,构建“定位-分割”级联架构,利用定位结果剔除背景噪声,引导U-Net进行精细化分割。在公开数据集上的实验结果表明,YOLOMACR-Net的结构捕获率(SCR)达到100%,mIoU、Dice系数和HD95分别达到88.17%、93.71%和3.37 mm,且参数量仅为1.65M。结果证明该模型能有效整合多尺度信息,在保持轻量化的同时显著提升了复杂场景下的分割精度。 展开更多
关键词 医学图像分割 深度学习 YOLO MACR U-net
在线阅读 下载PDF
基于改进的U-Net网络的肺癌数字病理图像分割算法
6
作者 黄毓珍 林长方 《兰州文理学院学报(自然科学版)》 2026年第1期67-72,共6页
针对经典的医学图像语义分割模型U-Net的局限和肺癌数字病理图像的特点,提出了一种结合残差学习模块和混合注意力机制的图像分割算法.算法以U-Net网络为基础框架,分别在卷积层和编码器-解码器间引入残差学习模块和通道、空间注意力机制... 针对经典的医学图像语义分割模型U-Net的局限和肺癌数字病理图像的特点,提出了一种结合残差学习模块和混合注意力机制的图像分割算法.算法以U-Net网络为基础框架,分别在卷积层和编码器-解码器间引入残差学习模块和通道、空间注意力机制模块,来提高特征提取能力和分割精度;同时改进损失函数以解决分割过程中类不平衡问题.实验结果显示改进算法在ACC、SEN、MioU和Dice等评价指标上均优于其他对比算法,表明其在肺癌数字病理图像分割中具有较强的优越性和竞争力. 展开更多
关键词 U-net 数字病理 图像分割 注意力机制 残差结构
在线阅读 下载PDF
MS-WTUNet面向心脏MRI分割的多尺度小波变换网络
7
作者 黄佳敏 张小波 《现代信息科技》 2026年第1期52-57,共6页
心脏MRI图像的精准分割对心血管疾病诊疗至关重要,但由于心脏结构复杂、边界模糊以及组织对比度较低的问题,使得传统的U-Net网络实现准确分割仍面临挑战。文章提出一种多尺度小波变换网络MS-WTUNet,该网络以U-Net为骨架,在编码与解码各... 心脏MRI图像的精准分割对心血管疾病诊疗至关重要,但由于心脏结构复杂、边界模糊以及组织对比度较低的问题,使得传统的U-Net网络实现准确分割仍面临挑战。文章提出一种多尺度小波变换网络MS-WTUNet,该网络以U-Net为骨架,在编码与解码各层嵌入了与注意力相结合的小波块,在频域中强化纹理与边缘信息,有效提升了模型对复杂边界的表征能力。此外,模型辅以跨层多尺度特征融合与分层深度监督损失,进一步优化了模型从局部细节到全局语义的学习过程。在公开ACDC数据集上的实验表明,MS-WTUNet能够将心肌等边界模糊结构的分割精度提升至91.70%,为心脏MRI图像的自动分割提供了一种性能优异的解决方案。 展开更多
关键词 医学图像分割 U-net 小波变换 MRI图像
在线阅读 下载PDF
MGDE-UNet:轻量化光伏电池缺陷分割模型
8
作者 王涛 黎远松 +2 位作者 石睿 陈慧宁 侯宪庆 《广西师范大学学报(自然科学版)》 北大核心 2026年第1期45-55,共11页
针对光伏电池缺陷分割模型存在计算复杂度高、参数量大、分割速度慢和分割精度低的问题,本文提出一种基于轻量化改进U-Net的光伏电池缺陷分割模型。首先,使用MobitNetV3_Large网络替换原U-Net的主干网络,在减少模型计算量和参数量的同时... 针对光伏电池缺陷分割模型存在计算复杂度高、参数量大、分割速度慢和分割精度低的问题,本文提出一种基于轻量化改进U-Net的光伏电池缺陷分割模型。首先,使用MobitNetV3_Large网络替换原U-Net的主干网络,在减少模型计算量和参数量的同时,保留原网络的特征提取能力。其次,将DynamicConv模块融入GhostConv模块,设计出G-DConv模块,替换原U-Net上采样部分使用的普通卷积模块,在最大化减少网络参数和计算量的同时,提升模型的推理速度。最后,通过在网络上采样后引入ECA注意力机制,减少复杂背景对检测效果的干扰。实验结果表明,该模型的参数量仅为2.43×10^(6),计算量仅为3.03×10^(9),推理速度达到61 frame/s。相比基准模型,改进后的模型MIoU和MPA分别提升0.12个百分点和2.17个百分点,满足工业设备部署要求。 展开更多
关键词 光伏电池 U-net 轻量化 语义分割 ECA
在线阅读 下载PDF
融合部分卷积和ECA机制的轴承滚子外观缺陷U-Net分割模型
9
作者 顾云鹏 马超 +2 位作者 臧绍飞 于朋洋 马建伟 《轴承》 北大核心 2026年第1期91-99,共9页
针对传统图像处理和人工检测方法在复杂、多样的滚子外观缺陷检测中效率低下和精度不高的问题,提出一种融合部分卷积和高效通道注意力机制(ECA)的U-Net模型。首先,针对原始U-Net解码阶段不同尺度特征的融合与重复使用产生冗余特征的问题... 针对传统图像处理和人工检测方法在复杂、多样的滚子外观缺陷检测中效率低下和精度不高的问题,提出一种融合部分卷积和高效通道注意力机制(ECA)的U-Net模型。首先,针对原始U-Net解码阶段不同尺度特征的融合与重复使用产生冗余特征的问题,设计一种融合部分卷积的解码器,缓解冗余特征对模型的负面影响并提高模型的计算效率;其次,在解码器部分引入ECA,自适应建立通道之间的信息交互,增强模型捕捉和理解图像重要特征的能力;最后,针对轴承滚子外观检测任务易出现样本不均衡问题,设计一种融合Focal Loss的损失函数以监督训练模型,减轻样本不均衡对模型的负面影响。在轴承滚子缺陷数据集上的试验结果表明,所提模型在各评估指标上均达到了较高精度,验证了其有效性和可行性。 展开更多
关键词 滚动轴承 滚子 卷积 解码器 损失函数 注意力机制 U-net
在线阅读 下载PDF
基于Mamba-UNet架构的3D MRI脑肿瘤分割方法
10
作者 张野 牛大田 《计算机应用研究》 北大核心 2026年第1期305-312,共8页
多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,提出了基于Mamba与U-Net融合架构的PhC-ToMamba分割模型。模型在瓶颈层嵌入了ToM模块旨... 多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,提出了基于Mamba与U-Net融合架构的PhC-ToMamba分割模型。模型在瓶颈层嵌入了ToM模块旨在有效建模高维特征的全局信息,通过从三个方向计算特征依赖关系并交互,提取更适用于三维图像的全局特征信息;此外,为进一步提升全局特征的提取能力,提出了一种新的多面体卷积(PhConv),并将其嵌入至编码器中,显著扩大了感受野,并提升对重点目标区域的特征提取能力,有效解决了当前主流脑肿瘤图像分割模型对全局信息感知的局限性问题,增强了对关键区域的关注度。在BraTS 2021和MSD Task01_BrainTumor数据集上进行了广泛的实验。实验结果显示,PhC-ToMamba在整个肿瘤、肿瘤核心和增强肿瘤分割任务中的Dice系数分别达到了95.05%/90.46%、94.53%/89.91%和90.74%/75.91%。与其他先进方法相比,PhC-ToMamba在分割精度和参数效率方面展现了优越性,为脑肿瘤分割任务提供稳健的解决方案,从而提高了诊断准确性。 展开更多
关键词 深度学习 MRI脑肿瘤分割 多面体卷积 三维U-net Mamba
在线阅读 下载PDF
基于NET Web开发技术的电网运营管理与自动化监测研究
11
作者 潘鸿飞 刑应春 +2 位作者 王喜银 尹晨旭 曹洁 《自动化技术与应用》 2026年第1期171-175,共5页
以往电网的运营涉及很多不确定性因素而影响了电网运营监测的状态分析过程,导致监测结果准确度不高影响了电网运营管理效果。为此提出了基于NET Web开发技术的电网运营管理与自动化监测方法。该方法首先深入分析电网发电与供电环节的不... 以往电网的运营涉及很多不确定性因素而影响了电网运营监测的状态分析过程,导致监测结果准确度不高影响了电网运营管理效果。为此提出了基于NET Web开发技术的电网运营管理与自动化监测方法。该方法首先深入分析电网发电与供电环节的不确定性因素,通过定量计算构建综合性管理指标。随后,运用NET Web开发技术构建数据处理架构,有效访问电网运营数据。进而,通过解析数据的经验谱分布函数值,实现对电网运营的自动化监测。实验结果表明,此方法能准确监测电网运营状态,有效满足电网运营管理需求。本研究不仅提升了电网运营的监测精度,也为电网的自动化管理提供有力支持,对提升电网运营效率具有重要意义。 展开更多
关键词 电网运营 自动化监测 net Web 程序开发技术
在线阅读 下载PDF
基于改进AOD-Net的交通场景去雾算法
12
作者 都雪静 刘世新 《黑龙江工程学院学报》 2026年第1期1-9,共9页
针对现有图像去雾算法在处理交通场景下的图片会出现色彩失真、亮度偏暗、无法兼顾图像去雾质量及速度的问题,提出一种基于改进AOD-Net的交通场景去雾算法。设计多尺度注意力机制网络,对输入特征图使用不同尺寸的卷积核进行卷积处理后,... 针对现有图像去雾算法在处理交通场景下的图片会出现色彩失真、亮度偏暗、无法兼顾图像去雾质量及速度的问题,提出一种基于改进AOD-Net的交通场景去雾算法。设计多尺度注意力机制网络,对输入特征图使用不同尺寸的卷积核进行卷积处理后,引入高效通道注意力机制,通过自适应调整通道权重,增强模型对多尺度特征的关注能力。在网络末端引入空间池化金字塔模块,增大感受野,多尺度捕捉图像特征增强模型的细节保留能力。优化损失函数,使用复合损失函数优化去雾后图像亮度、对比度等问题。在Foggy cityscapes数据集进行实验,结果表明改进后的算法在薄雾、中雾和浓雾条件下的峰值信噪比原AOD-Net算法分别高出3.65 dB、1.06 dB和0.54 dB,结构相似度分别达到0.9228、0.8510和0.8024。 展开更多
关键词 图像去雾 改进的AOD-net 多尺度注意力机制网络 损失函数
在线阅读 下载PDF
基于改进U2-Net的低剂量CT图像去噪算法研究
13
作者 董建 伍敏婷 王琪玉 《自动化与仪表》 2026年第1期101-106,共6页
针对低剂量CT(LDCT)因辐射剂量降低而导致的图像噪声加剧与细节模糊问题,该文提出一种基于改进U2-Net的去噪算法。该算法引入残差U形模块,强化了网络对多尺度特征的融合能力以精确恢复组织结构;同时,设计了融合均方误差、结构相似性、... 针对低剂量CT(LDCT)因辐射剂量降低而导致的图像噪声加剧与细节模糊问题,该文提出一种基于改进U2-Net的去噪算法。该算法引入残差U形模块,强化了网络对多尺度特征的融合能力以精确恢复组织结构;同时,设计了融合均方误差、结构相似性、边缘与全变分的多分量联合损失函数,协同提升图像保真度与视觉质量。在公开LDCT基准数据集上的综合评估表明,与现有算法相比,该算法的峰值信噪比(PSNR)和结构相似性(SSIM)指标均表现更优,能在有效抑制噪声的同时清晰保留关键解剖细节,展现出良好的临床应用价值。 展开更多
关键词 计算机断层成像 低剂量CT(LDCT) U2-net网络 图像去噪 联合损失函数
在线阅读 下载PDF
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
14
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration Deep-learning prediction U-net model CFSv2 NorCPM
在线阅读 下载PDF
基于U-Net骨架变体的内陆盐碱地信息遥感提取
15
作者 令世豪 杨粉莉 +4 位作者 黄博涵 李瑶 杨联安 闫琳悦 郝贝贝 《中国农学通报》 2025年第19期151-158,共8页
针对传统遥感分类方法依赖人工特征设计、泛化能力不足的问题,本研究应用深度学习模型进行盐碱地信息精准提取。利用Landsat 8 OLI遥感影像,采用基于U-Net深度学习模型的盐碱地信息提取方法,系统对比ResNet34、MobileNetV2_100和TF_Mobi... 针对传统遥感分类方法依赖人工特征设计、泛化能力不足的问题,本研究应用深度学习模型进行盐碱地信息精准提取。利用Landsat 8 OLI遥感影像,采用基于U-Net深度学习模型的盐碱地信息提取方法,系统对比ResNet34、MobileNetV2_100和TF_MobileNetV3_Small_100 3种骨架在冻结与不冻结训练策略下的性能差异。实验表明,ResNet34的收敛速度、分割精度与泛化能力总体优于轻量化模型(MobileNetV2_100、TF_MobileNetV3_Small_100),尤其是不冻结的ResNet34模型综合表现最好,盐碱地类别的分类精度为0.880、召回率为0.708、F_(1)分数为0.785,均优于其他模型。轻量化模型在资源受限场景下表现尚可,可在计算资源有限和分割精度要求不高的情况下使用,但在复杂场景下仍需高性能骨干网络支持。不冻结模型的表现普遍优于冻结模型,在深度学习模型训练过程中调整全部参数对于提高精度和泛化能力具有重要作用。研究验证深度学习在盐碱地遥感监测中的有效性,可为盐碱地智能识别监测提供模型选型依据。 展开更多
关键词 盐碱地 U-net Resnet34 Mobilenet 语义分割 迁移学习 深度学习模型
原文传递
基于Densenet模型的步态相位识别研究 被引量:2
16
作者 付明凯 王少红 马超 《电子测量技术》 北大核心 2025年第1期119-128,共10页
步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位... 步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位识别方法。首先,将两个惯性测量单元布置在胫骨前部和大腿前侧的股直肌,采集了200人次受试者前进、转弯、上楼梯、下楼梯4种步态任务的步态数据。然后,对数据进行滤波重采样预处理后作为所提模型的输入。最后,利用SECBAM-Densenet模型得到输出模型的分类结果。结果显示,改进后SECBAM-Densenet模型在同一个体中不同步态相位平均识别准确率达到了95.76%,相比其他模型有0.66%~21.22%的提升。在不同个体中,相位的识别准确率均高于94%。以上试验结果表明,本文提出的模型可以应用于步态相位识别领域,并为下肢外骨骼机器人的柔性控制提供了试验参考。 展开更多
关键词 步态相位 Densenet SE-net注意力模块 空间通道注意力模块
原文传递
基于PLP-net轻量化模型的马铃薯捡拾收获中杂质检测方法 被引量:1
17
作者 潘志国 邱保华 +4 位作者 杨然兵 张还 张健 李莹莹 邓志熙 《农业工程学报》 北大核心 2025年第12期208-218,共11页
针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)... 针对目前马铃薯杂质检测算法存在的运算量高、内存占用大、实时性差等问题,该研究提出了一种基于PLP-net的轻量化检测模型。首先,通过重构骨干网络架构并优化检测头网络,显著降低模型运算量;其次,引入ECA(efficient channel attention)注意力机制强化关键特征提取能力,并采用Focal-DIoU损失函数(focal and distance-IoU loss)优化边界框回归过程来解决数据集中杂质样本失衡的问题,构建基础模型PL-net。然后,基于模型稀疏化训练结果,精确剪除冗余通道,有效缩减运算量及内存占用,提升模型实时性,后经微调训练后构建PLP-net轻量化模型。为实现工程化应用,该研究采用TensorRT推理部署框架将PLP-net部署至嵌入式设备,并基于PyQt5(Python Qt5 binding)框架开发了可视化交互系统以满足马铃薯杂质检测的生产需求。试验结果表明:与YOLOv8n模型相比,PLP-net在计算效率方面明显提升,浮点运算量降低7.2 G,模型体积压缩2.1 MB,推理速度提升99.4帧/s。使用TensorRT加速和未使用TensorRT加速的PLP-net模型相较于YOLOv8n分别提升18.4帧/s和11.4帧/s。PLP-net模型可为后续马铃薯杂质智能分拣提供技术支撑。 展开更多
关键词 马铃薯杂质 PLP-net 轻量化 模型剪枝 模型部署
在线阅读 下载PDF
MC-Res2UNet网络在盐体识别中的应用 被引量:1
18
作者 王新 张傲 +1 位作者 张薇 陈同俊 《石油地球物理勘探》 北大核心 2025年第1期21-29,共9页
精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改... 精确识别埋藏在地表下的盐体对于石油和天然气勘探有重大意义。传统的语义分割算法依然存在对盐体的识别精度较低、边缘识别效果较差、识别效率低等问题。文中提出一种基于MC-Res2UNet网络的盐体识别方法,该网络整体架构由U-Net网络改进。首先,使用Res2Net网络作为编码器提取盐体特征信息;然后,在解码层中的卷积之后引入CBAM注意力模块重新分配盐体空间信息和通道信息,抑制不重要的信息;最后,利用多尺度特征融合模块融合空间信息和语义信息,提高盐体识别精度。将文中提出的MC-Res2UNet模型用于TGS盐体数据集进行验证,像素准确率可达到96.6%,交并比可达到86.8%,优于传统的DeepLabV3+、DANet等语义分割方法,对地下盐体有更好的识别效果。 展开更多
关键词 盐体识别 U-net 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究 被引量:1
19
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 U-net网络 CANNY边缘检测算法
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究 被引量:2
20
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 U-net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部