Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded de...Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.展开更多
文摘Micro-expressions,fleeting involuntary facial cues lasting under half a second,reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy.Real-time recognition on resource-constrained embedded devices remains challenging,as current methods struggle to balance performance and efficiency.This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy.Unlike prior simplistic feature fusion techniques,our novel multi-feature fusion strategy leverages temporal,spatial,and differential features to better capture dynamic changes.Enhanced by Residual Network(ResNet)architecture with channel and spatial attention mechanisms,the model improves feature representation while maintaining a lightweight design.Evaluations on SMIC,CASME II,SAMM,and their composite dataset show superior performance in Unweighted F1 Score(UF1)and Unweighted Average Recall(UAR),alongside faster detection speeds compared to existing algorithms.