期刊文献+
共找到1,731篇文章
< 1 2 87 >
每页显示 20 50 100
Global integration design method of acceleration and deceleration control schedule for variable cycle engine
1
作者 Ying CHEN Sangwei LU +1 位作者 Wenxiang ZHOU Jinquan HUANG 《Chinese Journal of Aeronautics》 2025年第5期248-261,共14页
Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ... Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit. 展开更多
关键词 Control schedule design acceleration and deceleration Variablecycle engine Fixed-states method Co-differential evolutionary algorithm
原文传递
Decoupling Algorithm of Six⁃Axis Acceleration Sensing Mechanisms
2
作者 ZHANG Yuanwei YOU Jingjing +1 位作者 ZHANG Xianzhu SHI Haofei 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期141-149,共9页
To address the issues of low solving efficiency and poor decoupling accuracy in existing six-axis acceleration decoupling algorithms,a new decoupling algorithm is proposed along with a corresponding auto-compensation ... To address the issues of low solving efficiency and poor decoupling accuracy in existing six-axis acceleration decoupling algorithms,a new decoupling algorithm is proposed along with a corresponding auto-compensation algorithm.Firstly,based on Kane’s method,the dynamics model of the six-axis acceleration sensing mechanism is formed to determine the relationship between accelerations and branch forces.Then,with the trapezoidal rule,a solution algorithm for the dynamics model is developed.The virtual prototype tests show that the computation of this algorithm is five times more efficient than that of the ADAMS core algorithm.Besides,this solution algorithm is applied to the“12-6”configuration and“9-3”configuration.The results show that the efficiency of the former is nearly 3.3 times that of the latter.Finally,based on vibration theory,an auto-compensation algorithm for the solution algorithm is established.Virtual prototype tests indicate that with 40%noise interference,the auto-compensation algorithm achieves misjudgement rate and omission rate of only 4.0%and 4.5%,respectively,and the errors in the solving process converge. 展开更多
关键词 six⁃axis acceleration sensing mechanism Kane’s method trapezoidal rule auto⁃compensation
在线阅读 下载PDF
Analysis of the Cicatricial Acceleration Method (MAC®) in Skin Repair in Wistar Rattus norvegicus with Induced Chemical Burns
3
作者 Marcus Vinicius de Mello Pinto Sandroval Francisco Torres +9 位作者 Aline Ronis Sampaio Karin Yuri Fernandez Iturra Miriam Viviane Baron Patricia Froes Carlos Ruiz da Silva Daiane Paza Maria Elena Silva Alvarez Josefa Jeanette Ugalde Juliano Tibola Esteban Fortuny 《Journal of Biosciences and Medicines》 2024年第9期204-214,共11页
Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that... Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality. 展开更多
关键词 Chemical Burn HEALING SCARRING Cicatricial acceleration method (MAC®) Tissue Repair
在线阅读 下载PDF
Designing method of acceleration and deceleration control schedule for variable cycle engine 被引量:16
4
作者 Linyuan JIA Yuchun CHEN +2 位作者 Ronghui CHENG Tian TAN Reran SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期27-38,共12页
Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex... Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE. 展开更多
关键词 acceleration and deceleration Control schedule optimization Steady-state reverse method Transient-state reverse method Variable cycle engine Virtual power extraction method
原文传递
Stability of average acceleration method for structures with nonlinear damping 被引量:4
5
作者 李妍 吴斌 欧进萍 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期87-92,共6页
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical ... The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis. 展开更多
关键词 unconditional stability average acceleration method nonlinear systems nonlinear damping
在线阅读 下载PDF
FPGA-based Acceleration of Davidon-Fletcher-Powell Quasi-Newton Optimization Method 被引量:2
6
作者 Liu Qiang Sang Ruoyu Zhang Qijun 《Transactions of Tianjin University》 EI CAS 2016年第5期381-387,共7页
Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are comp... Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation. 展开更多
关键词 QUASI-NEWTON method hardware acceleration field PROGRAMMABLE gate array
在线阅读 下载PDF
Application of material-mesh algebraic collapsing acceleration technique in method of characteristics——based neutron transport code 被引量:5
7
作者 Ming Dai Mao-Song Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第8期95-109,共15页
The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which ma... The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations. 展开更多
关键词 Algebraic collapsing acceleration Material-mesh ACA method of characteristics OPENMP Arbitrary geometry
在线阅读 下载PDF
Forced propagation method for Monte Carlo fission source convergence acceleration in the RMC 被引量:3
8
作者 Ze-Guang Li Kan Wang +1 位作者 Yu-Chuan Guo Xiao-Yu Guo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第3期52-62,共11页
In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various accelerati... In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA. 展开更多
关键词 Fission source convergence acceleration Monte Carlo method Forced propagation method RMC code
在线阅读 下载PDF
Design of acceleration control schedule for adaptive cycle engine based on direct simulation model
9
作者 Keran SONG Linyuan JIA +1 位作者 Yuchun CHEN Tian TAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期307-318,共12页
To design the optimum acceleration control schedule for the Adaptive Cycle Engine(ACE)in the full flight envelope,this paper establishes a direct simulation model of the ACE transient state.In this model,geometric par... To design the optimum acceleration control schedule for the Adaptive Cycle Engine(ACE)in the full flight envelope,this paper establishes a direct simulation model of the ACE transient state.In this model,geometric parameters are used to replace the component state parameters.The corresponding relationship between geometric parameters and component state parameters is determined by sensitivity analysis.The geometric variables are controlled when the geometric adjustment speed exceeds the limit,and at the same time the corresponding component state parameters are iterated.The gradient optimization algorism is used to optimize the ground acceleration process of ACE,and the control schedule in terms of operating point of compression components and corrected acceleration rate is used as the full-envelope acceleration control schedule based on the similarity principle.The acceleration control schedules of the triple-bypass mode and the double-bypass mode are designed in this paper.The acceleration processes under various flight conditions are simulated using the acceleration control schedules.Compared with the acceleration process with the linear geometric adjustment schedule,the acceleration performance of ACE is improved by the acceleration control schedule,with the impulse of the acceleration process of the triple-bypass mode being increased by 8.7%-12.3% and the impulse of the double-bypass mode acceleration process being increased by 11.8%-14.1%. 展开更多
关键词 Adaptive Cycle Engine(ACE) Direct simulation method acceleration Control schedule Full flight envelope
原文传递
An Improved Graphics Processing Unit Acceleration Approach for Three-Dimensional Structural Topology Optimization Using the Element-Free Galerkin Method 被引量:1
10
作者 Haishan Lu Shuguang Gong +2 位作者 Jianping Zhang Guilan Xie Shuohui Yin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1151-1178,共28页
We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the ra... We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the race condition under parallelization.We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model.We explored the GPU parallel algorithm of assembling stiffness matrix,solving discrete equation,analyzing sensitivity,and updating design variables in detail.We also proposed a node pair-wise method for assembling the stiffnessmatrix and a node-wise method for sensitivity analysis to eliminate race conditions during the parallelization.Furthermore,we investigated the effects of the thread block size,the number of degrees of freedom,and the convergence error of preconditioned conjugate gradient(PCG)on GPU computing performance.Finally,the results of the three numerical examples demonstrated the validity of the proposed approach and showed the significant acceleration of structural topology optimization.To save the cost of optimization calculation,we proposed the appropriate thread block size and the convergence error of the PCG method. 展开更多
关键词 Topology optimization EFG method GPU acceleration race condition preconditioned conjugate gradient
在线阅读 下载PDF
Almost Sure Convergence of Proximal Stochastic Accelerated Gradient Methods
11
作者 Xin Xiang Haoming Xia 《Journal of Applied Mathematics and Physics》 2024年第4期1321-1336,共16页
Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha... Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one. 展开更多
关键词 Proximal Stochastic accelerated method Almost Sure Convergence Composite Optimization Non-Smooth Optimization Stochastic Optimization accelerated Gradient method
在线阅读 下载PDF
A dynamic-mode-decomposition-based acceleration method for unsteady adjoint equations at low Reynolds numbers
12
作者 Wengang Chen Jiaqing Kou Wenkai Yang 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期353-356,共4页
The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-... The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-tion(DMD).The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system.Thereafter,DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching.First-order zero frequency mode is selected to accelerate the pseudo-time marching of unsteady adjoint equations in every real-time step.Through flow past a stationary circular cylinder and an unsteady aerodynamic shape optimization example,the efficiency of solving unsteady adjoint equations is significantly improved.Re-sults show that one hundred adjoint vectors contains enough information about the pseudo-time dynamics,and the adjoint dominant mode can be precisely predicted only by five snapshots produced from the adjoint vectors,which indicates DMD analysis for pseudo-time marching of unsteady adjoint equations is efficient. 展开更多
关键词 acceleration method Unsteady adjoint Dynamic mode decomposition Optimization efficiency
在线阅读 下载PDF
Structural topology optimization under stationary random base acceleration excitations 被引量:3
13
作者 Fei HE Hongqiang LIAO +1 位作者 Jihong ZHU Zhongze GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1416-1427,共12页
Structural topology optimization subjected to stationary random base acceleration excitations is investigated in this paper. In the random response analysis, the Large Mass Method(LMM) which attributes artificial larg... Structural topology optimization subjected to stationary random base acceleration excitations is investigated in this paper. In the random response analysis, the Large Mass Method(LMM) which attributes artificial large mass values at each driven nodal Degree Of Freedom(DOF) to transforming the base acceleration excitations into force excitations is proposed. The Complete Quadratic Combination(CQC) which is commonly used to calculate the random responses in previous optimization has been proven to be computationally expensive especially for large-scale problems. In order to conquer this difficulty, the Pseudo Excitation Method(PEM) and the combined method of PEM and Mode Acceleration Method(MAM) are adopted into the dynamic topology optimization, and random responses are calculated using these two methods to ascertain a high efficiency over the CQC. A density-based topology optimization method minimizing dynamic responses is then formulated based on the integration of LMM and PEM or the combined method of PEM and MAM. Numerical examples are presented to verify the accuracy of the proposed schemes in dynamic response analysis and the quality of the optimized design in improving dynamic performance. 展开更多
关键词 Dynamic response Large mass method Mode acceleration method Pseudo excitation method RANDOM BASE acceleration EXCITATIONS Topology optimization
原文传递
Recursive Least Square Vehicle Mass Estimation Based on Acceleration Partition 被引量:6
14
作者 FENG Yuan XIONG Lu +1 位作者 YU Zhuoping QU Tong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期448-459,共12页
Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resi... Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on asphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition. 展开更多
关键词 mass estimation recursive least square method acceleration partition
在线阅读 下载PDF
THE ACCELERATED SEARCH-EXTENSION METHOD FOR COMPUTING MULTIPLE SOLUTIONS OF SEMILINEAR PDEs 被引量:2
15
作者 刘跃武 谢资清 陈传淼 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期803-816,共14页
In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple... In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach. 展开更多
关键词 semilinear PDEs multiple solutions accelerated search-extension method (ASEM) two-grid method
在线阅读 下载PDF
Sequential ensemble optimization based on general surrogate model prediction variance and its application on engine acceleration schedule design 被引量:4
16
作者 Yifan YE Zhanxue WANG Xiaobo ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期16-33,共18页
The Efficient Global Optimization(EGO)algorithm has been widely used in the numerical design optimization of engineering systems.However,the need for an uncertainty estimator limits the selection of a surrogate model.... The Efficient Global Optimization(EGO)algorithm has been widely used in the numerical design optimization of engineering systems.However,the need for an uncertainty estimator limits the selection of a surrogate model.In this paper,a Sequential Ensemble Optimization(SEO)algorithm based on the ensemble model is proposed.In the proposed algorithm,there is no limitation on the selection of an individual surrogate model.Specifically,the SEO is built based on the EGO by extending the EGO algorithm so that it can be used in combination with the ensemble model.Also,a new uncertainty estimator for any surrogate model named the General Uncertainty Estimator(GUE)is proposed.The performance of the proposed SEO algorithm is verified by the simulations using ten well-known mathematical functions with varying dimensions.The results show that the proposed SEO algorithm performs better than the traditional EGO algorithm in terms of both the final optimization results and the convergence rate.Further,the proposed algorithm is applied to the global optimization control for turbo-fan engine acceleration schedule design. 展开更多
关键词 Cross-validation Efficient global optimization Engine acceleration schedule design Ensemble of surrogate models Gas turbine engine Optimization methods Surrogate-based optimization
原文传递
Nonlinear Problems via a Convergence Accelerated Decomposition Method of Adomian 被引量:1
17
作者 Mustafa Turkyilmazoglu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期1-22,共22页
The present paper is devoted to the convergence control and accelerating the traditional Decomposition Methodof Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding aparam... The present paper is devoted to the convergence control and accelerating the traditional Decomposition Methodof Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding aparameterized term, containing an embedded parameter, new modified ADM is constructed. The optimal value ofthis parameter is later determined via squared residual minimizing the error. The failure of the classical ADM is alsoprevented by a suitable value of the embedded parameter, particularly beneficial for the Duan–Rach modification ofthe ADM incorporating all the boundaries into the formulation. With the presented squared residual error analysis,there is no need to check out the results against the numerical ones, as usually has to be done in the traditional ADMstudies to convince the readers that the results are indeed converged to the realistic solutions. Physical examplesselected from the recent application of ADM demonstrate the validity, accuracy and power of the presented novelapproach in this paper. Hence, the highly nonlinear equations arising from engineering applications can be safelytreated by the outlined method for which the classical ADM may fail or be slow to converge. 展开更多
关键词 Nonlinear equations Adomian decomposition method MODIFICATION convergence acceleration
在线阅读 下载PDF
Early acceleration of electrons and protons at the nonrelativistic quasiparallel shocks with different obliquity angles 被引量:1
18
作者 Jun Fang Chun-Yan Lu +1 位作者 Jing-Wen Yan Huan Yu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第12期298-304,共7页
The early acceleration of protons and electrons in the nonrelativistic collisionless shocks with three obliquities are investigated through 1D particle-in-cell simulations. In the simulations, the charged particles po... The early acceleration of protons and electrons in the nonrelativistic collisionless shocks with three obliquities are investigated through 1D particle-in-cell simulations. In the simulations, the charged particles possessing a velocity of 0.2c flow towards a reflecting boundary, and the shocks with a sonic Mach number of 13.4 and an Alfven Mach number of 16.5 in the downstream shock frame are generated.In these quasi-parallel shocks with the obliquity angles θ = 15°, 30° and 45°, some of the protons and the electrons can be injected into the acceleration processes, and their downstream spectra in the momentum space show a power law tail at a time of 1.89 × 10^5ω^-1pe, where ωpe is the electron plasma frequency.Moreover, the charged particles reflected at the shock excite magnetic waves upstream of the shock. The shock drift acceleration is more prominent with a larger obliquity angle for the shocks, but the accelerated particles diffuse parallel to the shock propagation direction more easily to participate in the diffusive shock acceleration. In the early acceleration stage, more energetic protons and electrons appear in the downstream of the shock for θ = 15° compared with the other two obliquities. Moreover, in the upstream region, the spectrum of the accelerated electrons is the hardest for θnB = 45° among the three obliquities, whereas the proton spectra for θnB = 15° and 45° are similar as a result of the competition of the effectiveness of the shock drift acceleration and the diffusive shock acceleration. 展开更多
关键词 acceleration of particles methods:numerical shock waves
在线阅读 下载PDF
A General Simplification and Acceleration Method for Distribution System Optimization Problems
19
作者 Jun Xiao Yupeng Zhou +1 位作者 Buxin She Zhenyu Bao 《Protection and Control of Modern Power Systems》 2025年第1期148-167,共20页
Solving optimization problems plays a vital role in ensuring the secure and economic operation of distribution systems.To enhance computational efficiency,this paper proposes a general simplification and acceleration ... Solving optimization problems plays a vital role in ensuring the secure and economic operation of distribution systems.To enhance computational efficiency,this paper proposes a general simplification and acceleration method for distribution system optimization problems.Firstly,the capacity boundary and voltage boundary model of distribution systems are established.The relative position between the two boundaries reflects the strength of capacity and voltage constraints,leading to the definition of two critical feeder lengths(CFLs)to quantify these strengths.Secondly,simplification criteria and an acceleration method are proposed.Given a distribution system,if the distance from the end load/DG node to the slack bus is less than the corresponding CFL,we can conclude that the capacity constraints are stricter than the voltage constraints.Then,the distribution system can be simplified by adopting DC power flow model or disregarding the voltage constraints.After that,the reference value tables of CFL are presented.Finally,the effectiveness of the proposed method is verified by exemplifying the method in network reconfiguration and reactive power optimization problems.By implementing the proposed acceleration method,a significant reduction in computation time is achieved while ensuring accuracy.This method applies to most urban distribution systems in optimization problems involving power flow equations or voltage constraints. 展开更多
关键词 Distribution system optimization problem power flow equation security region simplification criteria acceleration method network reconfiguration reactive power optimization
在线阅读 下载PDF
Establishment and validation of a method for cell irradiation in 96-well and 6-well plates using a linear accelerator
20
作者 Xiao-Qing Dong Qing Lin +5 位作者 Jie Hu Liang Huang Kun Yue Lu Wang Jia-Fei Zhang Mei-Ling Lu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期50-57,共8页
To establish and validate a method for cell irradiation in 96-well and 6-well plates using a linear accelerator, three irradiation methods(G0 B0 F40,G0 B1.5 F40, and G180 B1.5 F40) were designed to irradiate cell cult... To establish and validate a method for cell irradiation in 96-well and 6-well plates using a linear accelerator, three irradiation methods(G0 B0 F40,G0 B1.5 F40, and G180 B1.5 F40) were designed to irradiate cell culture plasticware simulated with RW3 slab phantom and polystyrene. The difference between the actual physical measured dose and the preset dose was compared among the three methods under the preparatory conditions of 2, 4, 6, 8, and 10 Gy. MDA-MB-231 cells were analyzed by using a cell proliferation assay and a clonogenic assay to verify the difference between the three cell irradiation methods on cell radiosensitivity. For each preset dose, the difference between the actual measured dose and the preset dose was the lowest for Method G0 B1.5 F40, the second lowest for Method G180 B1.5 F40, and the maximum for Method GOB0 F40. The ranges of the differences were-0.28 to 0.02%,-2.17 to-1.80%, and-4.92 to-4.55%, and 0.31 to-0.12%,-3.42 to-2.86%, and-7.31 to-6.92%,respectively, for 96-well and 6-well plates. The cell culture experiments proved that Method G0 B1.5 F40 was an accurate, effective, simple, and practical irradiation method. The most accurate and effective cell irradiation method should always be used, as it will reduce dose differences and instability factors and provide improved accuracy and comparability for laboratories researching cellular radiosensitivity. 展开更多
关键词 Linear accelerATOR RADIOTHERAPY CELL IRRADIATION methods CELL culture plate DOSE
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部