期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Neotethyan Ophiolites and Their Geodynamic Evolution During the Mesozoic: A Global Overview
1
作者 Yildirim DILEK 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期76-77,共2页
Neotethyan ophiolites evolved in multiple seaways separated by Gondwana–derived ribbon continents within an eastward widening, latitudinal oceanic realm(Neotethys) throughout the Mesozoic. Opening and closure of thes... Neotethyan ophiolites evolved in multiple seaways separated by Gondwana–derived ribbon continents within an eastward widening, latitudinal oceanic realm(Neotethys) throughout the Mesozoic. Opening and closure of these seaways were diachronous events, resulting in E–W variations in the timing of oceanic crust production and ophiolite emplacement. The Neotethyan ophiolites are highly diverse in their crustal–mantle structures and compositions, isotopic fingerprints, and sedimentary cover types, pointing to major differences in their mantle melt sources and tectonic and paleogeographic settings of magmatic construction(Dilek and Furnes, 2019). The Jurassic Western Alpine and Ligurian ophiolites in Europe and their counterparts in southern and northern Iberia formed in a narrow basin(Western Tethys) that developed between Europe and North Africa–Adria–Iberia. Their peridotites represent exhumed, continental lithospheric mantle, and the ophiolites display a Hess–type oceanic crustal architecture with MORB geochemical signatures(Dilek and Furnes, 2011). All these ophiolites were incorporated into continental margins from the downgoing oceanic lithosphere of the Western Tethys. Triassic, Jurassic and Cretaceous ophiolites east of Adria formed in different Neotethyan seaways(Dilek et al., 1990), and their rift–drift, seafloor spreading and suprasubduction zone(SSZ) magmatic construction involved multiple episodes of melting, depletion and refertilization of previously or actively subduction metasomatized mantle sources. Deep mantle recycling processes through subduction zone tectonics and/or plume activities played a major role in their melt evolution, and in the incorporation of mantle transition zone(MTZ) materials into their peridotites(Fig. 1;Dilek and Yang, 2018;Xiong et al., 2019). Tectonic mélanges structurally beneath these ophiolites include Permo–Triassic, OIB–type extrusive rocks, indicating that the initial dismantling of the Pangea supercontinent that led to the opening of the Triassic and Jurassic ocean basins within the Neotethyan realm was associated with plume magmatism(Dilek, 2003 a;Yang and Dilek, 2015). This plume signature is absent in the Permo–Triassic magmatic record of the Western Tethys to the west. The Cretaceous ophiolites around the Arabia(Dilek et al., 1990;Dilek and Delaloye, 1992;Dilek and Eddy,1992) and India sub-continents(Fareeduddin and Dilek, 2015) occur discontinuously along a ~9000-km-long belt from SW Anatolia to SE Tibet and Indo-China. The majority of these ophiolites have a Penrose–type oceanic crustal architecture(Dilek, 2003 b) and display SSZ geochemical affinities, complete with a MORB–IAT–BON progression of their chemo-stratigraphy(Fig. 1;Dilek and Thy, 1998;Dilek et al., 1999;Dilek and Furnes, 2014;Saccani et al., 2018). They evolved above a N–dipping, Trans–Tethyan subduction–accretion system that was situated in sub-tropical latitudes within the Neotethyan realm. The Trans–Tethyan subduction–accretion system was segmented into two major domains(Western and Eastern domains) by the NNE–SSW–oriented, sinistral Chaman–Omach–Nal transform fault plate boundary. This Cretaceous intraoceanic arc–trench system was analogous to the modern Izu–Bonin–Mariana(IBM) and Tonga arc–trench systems in the western Pacific in terms of its size. Diachronous collisions of the Arabia and India sub-continents with this segmented Trans-Tethyan arc–trench system resulted in the southward emplacement of the SSZ Neotethyan ophiolites onto their passive margins in the latest Mesozoic(Dilek and Furnes, 2019). A separate N–dipping subduction system, dipping beneath Eurasia to the north during much of the Jurassic and Cretaceous, was consuming the Neotethyan oceanic lithosphere and was responsible for the construction of a composite magmatic arc belt extending discontinuously from Southern Tibet to Northern Iran. Slab rollback along this northern subduction system produced locally developed forearc–backarc oceanic lithosphere that was subsequently collapsed into the southern margin of Eurasia. The existence of these two contemporaneous, Ndipping subduction systems within Neotethys led to its rapid contraction and the fast convergence of India towards Eurasia during the late Mesozoic–early Cenozoic(Dilek and Furnes, 2019). It was the collision with Eurasia of the India sub-continent with the accreted ophiolites around its periphery in the Late Paleogene that produced the Himalayan orogeny. 展开更多
关键词 neotethyan ophiolites MORB ophiolites suprasubduction zone(SSZ)ophiolites trans–Tethyan subduction–accretion system slab rollback and forearc extension
在线阅读 下载PDF
Ocean-continent Transition to Suprasubduction Zone Origin of the Western Yarlung Zangbo Ophiolites in SW Tibet, China: Multi-stage, Transient Evolution of the Neotethyan Oceanic Lithosphere
2
作者 LIU Fei YANG Jingsui +7 位作者 Yildirim DILEK LIAN Dongyang XIE Yanxue NIU Xiaolu FENG Guangying ZHAO Hui HUANG Jian LI Guanlong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期16-17,共2页
The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosp... The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosphere(Fig.1a).We have investigated the internal structure and the geochemical makeup of mafic-ultramafic rock assemblages that are exposed in the westernmost segment of the YZSZ where the suture zone architecture displays two distinct sub-belts of ophiolitic and mélange units separated by a continental Zhongba terrane(Fig.1b).These two sub-belts include the Daba–Xiugugabu in the south(Southern sub-belt,SSB)and the Dajiweng–Saga in the north(Northern sub-belt,NSB).We present new structural,geochemical,geochronological data from upper mantle peridotites and mafic dike intrusions occurring in these two sub-belts and discuss their tectonomagmatic origin.In-situ analysis of zircon grains obtained from mafic dikes within the Baer,Cuobuzha and Jianabeng massifs in the NSB,and within the Dongbo,Purang,Xiugugabu,Zhaga and Zhongba in the SSB have yielded crystallization ages ranging between130 and 122 Ma.Dike rocks in both sub-belts show N-MORB REE patterns and negative Nb,Ta and Ti anomalies,reminiscent of those documented from SSZ ophiolites.*Harzburgitic host rocks of the mafic dike intrusionsmainly display geochemical compositions of abyssal peridotites(Fig.2),with the exception of the Dajiweng harzburgites,which show the geochemical signatures of forearc peridotites(Lian et al.,2016).Extrusive rocks that are spatially associated with these peridotite massifs in both sub-belts also have varying compositional and geochemical features.Tithonian to Valanginian(150–135 Ma)basaltic rocks in the Dongbo massif have OIB-like geochemistry and 138 Ma basaltic lavas in the Purang massif have EMORB-like geochemistry(Liu et al.,2015).Tuffaceous rocks in the Dajiweng massif are140 Ma in age and show OIB-like geochemistry.We interpret these age and geochemical data to reflect a rifted continental margin origin of the extrusive rock units in both sub-belts.These data and structural observations show that the western Yarluang Zangbo ophiolites represent fragments of an Ocean-Continent Transition(OCT)peridotites altered by fluids in an initial supersubduction setting.We infer that mafic-ultramafic rock assemblages exposed in the SSB and NSB initially formed in an ocean–continent transition zone(OCTZ)during the late Jurassic,and that they were subsequently emplaced in the forearc setting of an intraoceanic subduction zone within a Neotethyan seaway during 130 to 122 Ma.The NSB and SSB are hence part of a single,S-directed nappe sheet derived from a Neotethyan seaway located north of the Zhongba terrane. 展开更多
关键词 China MULTI-STAGE Ocean-continent Transition to Suprasubduction Zone Origin of the Western Yarlung Zangbo Ophiolites in SW Tibet Transient Evolution of the neotethyan Oceanic Lithosphere OIB
在线阅读 下载PDF
世界主要深水含油气盆地储层特征 被引量:8
3
作者 范玉海 屈红军 +3 位作者 张功成 冯杨伟 关利群 王云 《海洋地质与第四纪地质》 CAS CSCD 北大核心 2011年第5期135-145,共11页
世界深水盆地油气资源丰富,良好的储层是形成较大油气藏的必要条件。以大量调研资料为基础,对大西洋区域的墨西哥湾、巴西东部边缘、非洲西海岸、挪威中部陆架及新特提斯区域的澳大利亚西北陆架、中国南海、孟加拉湾、地中海(尼罗河三角... 世界深水盆地油气资源丰富,良好的储层是形成较大油气藏的必要条件。以大量调研资料为基础,对大西洋区域的墨西哥湾、巴西东部边缘、非洲西海岸、挪威中部陆架及新特提斯区域的澳大利亚西北陆架、中国南海、孟加拉湾、地中海(尼罗河三角洲)8个地区的24个深水含油气盆地储层特征进行了综合分析,归纳总结了这些深水含油气盆地中主力储层的形成时代、构造背景、沉积环境等特征,探讨了其分布规律。结果表明,世界深水含油气盆地主力储层集中在白垩纪及古近纪,大西洋区域深水盆地主力储层呈"北早南晚"的特点,新特提斯区域深水盆地呈"古近纪为主"的特点;漂移期储层占绝对优势,大西洋深水盆地群主力储层有"北裂南漂"的特点,新特提斯区域深水盆地主力储层多集中在漂移期;沉积相以深海浊积砂岩和河流—三角洲砂岩为主,大西洋区域深水盆地主力储层呈"北部滨浅海相、南部深海相"的分布格局,而新特提斯区域深水盆地以"河流—三角洲—滨浅海相"为主。 展开更多
关键词 储层 深水盆地 大西洋区域 新特提斯区域
在线阅读 下载PDF
冈底斯带东段墨脱地区早侏罗世辉长岩的成因及其构造意义 被引量:9
4
作者 董汉文 许志琴 +1 位作者 李源 刘钊 《岩石学报》 SCIE EI CAS CSCD 北大核心 2016年第12期3624-3634,共11页
本文系统地报道了冈底斯岩浆岩带东段墨脱地区辉长岩的LA-MC-ICP-MS锆石U-Pb年龄、LA-MC-ICP-MS锆石Hf同位素成分分析、全岩地球化学及全岩Sr-Nd同位素组成。结果表明,墨脱辉长岩形成于185.97±0.33Ma,SiO_2含量(48.19%~54.93%),MgO... 本文系统地报道了冈底斯岩浆岩带东段墨脱地区辉长岩的LA-MC-ICP-MS锆石U-Pb年龄、LA-MC-ICP-MS锆石Hf同位素成分分析、全岩地球化学及全岩Sr-Nd同位素组成。结果表明,墨脱辉长岩形成于185.97±0.33Ma,SiO_2含量(48.19%~54.93%),MgO和Mg#变化较大(MgO=4.53%~12.76%,Mg~#=50.0~67.4)。具有高CaO(7.44%~12.11%),低碱(Na_2O=0.93%~2.36%,K_2O=0.49%~2.21%)的特征。辉长岩稀土元素球粒陨石标准化配分模式与E-MORB相似;微量元素上,样品具有富集Sr、Sc等元素,亏损高场强元素Zr-Hf、Nb-Ta等的特征。墨脱辉长岩ε_(Nd)(t)值介于-3.06和2.84之间,^(87)Sr/^(86)Sr(t)值为0.7059~0.7103。锆石的ε_(Hf)(t)值为-4.1~0,和相对古老的Hf模式年龄(866~1036Ma)。上述特征表明墨脱辉长岩经历了不同程度的大陆地壳的混染作用。结合对区域地质、年代学、岩石地球化学以及同位素等资料的全面分析,笔者认为冈底斯东段在早侏罗世应处于新特提斯洋板片俯冲的构造背景。 展开更多
关键词 辉长岩 岩石成因 新特提斯洋俯冲 冈底斯岩浆岩带 墨脱地区
在线阅读 下载PDF
冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示:以日喀则东嘎岩体为例 被引量:38
5
作者 邱检生 王睿强 +1 位作者 赵姣龙 喻思斌 《岩石学报》 SCIE EI CAS CSCD 北大核心 2015年第12期3569-3580,共12页
以冈底斯中段日喀则东嘎出露的早侏罗世辉长岩-花岗岩杂岩体为对象,进行了锆石U-Pb年龄和Hf同位素,以及全岩元素地球化学组成的系统测定,据此探讨了岩石的成因及其对新特提斯构造演化的启示。该杂岩体中辉长岩主要由角闪石和钙质斜长石... 以冈底斯中段日喀则东嘎出露的早侏罗世辉长岩-花岗岩杂岩体为对象,进行了锆石U-Pb年龄和Hf同位素,以及全岩元素地球化学组成的系统测定,据此探讨了岩石的成因及其对新特提斯构造演化的启示。该杂岩体中辉长岩主要由角闪石和钙质斜长石组成,缺乏辉石;花岗岩主要为英云闪长岩、花岗闪长岩等构成的TTG岩石组合;花岗岩中普遍发育呈塑变形态的镁铁质包体。锆石LA-ICP-MS U-Pb定年结果显示,英云闪长岩和镁铁质包体的成岩年龄十分接近,且与辉长岩的年龄基本一致,均为177~180Ma。化学组成上,辉长岩低硅、富铝、贫碱,富轻稀土和大离子亲石元素,贫高场强元素,相似于高铝玄武岩。英云闪长岩贫碱、准铝、富钠,属钙碱性I型花岗岩。镁铁质包体具有与寄主岩相似的矿物组成和微量元素分布模式,二者均具有显著亏损的锆石Hf同位素组成,εHf(t)值分别为+11.4^+15.0和+14.4^+18.6。综合分析表明,早侏罗世冈底斯南缘应处于新特提斯洋板片俯冲的构造背景,其中辉长质侵入体为遭受俯冲板片析出流体交代作用的亏损地幔部分熔融的产物,花岗质岩石起源于初生地壳的部分熔融,镁铁质包体为辉长质岩浆与花岗质岩浆二者经混合作用的产物。结合对区内其它辉长质侵入体及相关镁铁质包体资料的全面分析,表明在新特提斯洋板片的整个俯冲过程中(>205~40Ma),冈底斯南缘应存在多次的基性岩浆底侵及其诱发的壳幔岩浆混合作用。 展开更多
关键词 辉长岩-花岗岩杂岩体 岩石成因 岩浆混合作用 新特提斯洋俯冲 日喀则东嘎
在线阅读 下载PDF
Structure and petrology of the Nagaland-Manipur Hill Ophiolitic Mélange zone,NE India:A Fossil Tethyan Subduction Channel at the India–Burma Plate Boundary 被引量:2
6
作者 Fareeduddin Yildirim Dilek 《Episodes》 2015年第4期298-314,共17页
The Nagaland–Manipur Hill ophiolite belt in NE India represents the southern extension of the Neotethyan Yarlung-Zhangbo suture zone in Southern Tibet,and connects this on-land exposure of the late Mesozoic collision... The Nagaland–Manipur Hill ophiolite belt in NE India represents the southern extension of the Neotethyan Yarlung-Zhangbo suture zone in Southern Tibet,and connects this on-land exposure of the late Mesozoic collision front in the north with a modern trench-arc system in the Andaman Sea region in the south.Ophiolitic subunits in the Nagaland–Manipur Hill area in the Indo-Myanmar Ranges occur as blocks or thrust sheets within a mélange with a serpentinite or fine-grained greywacke matrix,and are spatially associated with eclogitic and blueschist rock assemblages.This ophiolitic mélange zone is tectonically sandwiched between an older(Triassic–Cretaceous)accretionary prism complex(Nimi Flysch)to the east and a younger(Late Cretaceous–Miocene)accretionary wedge(Disang Flysch)to the west.The Nagaland–Manipur Hill ophiolitic mélange is thus part of a progressively westward migrated subduction-accretion complex,and it represents a typical subduction channel mélange evolved during the fast subduction of the Neotethyan oceanic lithosphere beneath Asia–Sundaland. 展开更多
关键词 neotethyan Yarlung Zhangbo Suture Zone Indo Myanmar Ranges Subduction Channel M lange Eclogitic Rock Assemblages Ophiolitic M lange Blueschist Rock Assemblages thrust sheets late mesozoic collision front
在线阅读 下载PDF
Petroqenesis of Subduction Zone and Dunite Bodies
7
作者 Ayse Didem Klh9 《Journal of Earth Science and Engineering》 2012年第7期377-386,共10页
The dunite bodies, which extend as the direction of W-E, are exposed to the southeast of Elazlg located within the Eastern Taurus Belt of Turkey. Mafic-Ultramafic section in the Guleman ophiolite consists ofdunite whi... The dunite bodies, which extend as the direction of W-E, are exposed to the southeast of Elazlg located within the Eastern Taurus Belt of Turkey. Mafic-Ultramafic section in the Guleman ophiolite consists ofdunite which containing disseminated chromites, wehrlite, gabbros (isotrope gabbro and layered gabbro) and clinopyroxenite. Dunite blocks above the harzburgite massif have irregular contacts with the enclosing peridotites. Dunite blocks are generally around a few of meters. Dunite blocks consist of gabbro and pyroxenite patches. The origin of dunite blocks are belong to the transition zone of harzburgitic ophiolites which is located at the base of the mafic layered section. They are entirely or largely magmatic formed by olivine and chromite ponds at the base of the crustal magma chamber. The rather around of rock pieces within dunite bodies are foliated such as features have been ascribed to the ophiolite being impregnated by and reacting with a melt. Rocks in the bodies show depleted in incompatible trace elements such as Ba, Nbet al., characteristic of subduction related magma. Furthermore, the high LREE/HREE and high Rb/Th ratios indicates a mantle that has been enrichmented by subduction. As a result, isotopic data, petrographic and geochemical of bodies's result suggest a parental magma derived from an enrichmed source of subduction zone. A few meters of the large dunite bodies, and ascribes to the central dunites a cumulative origin by fractionation from a picritic melt. 展开更多
关键词 neotethyan TURKEY dnite bodies subduction zone OPHIOLITE geochemistry.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部