In this paper, we consider a class of Kirchhoff type problem with superlinear nonlinearity. A sign-changing solution with exactly two nodal domains will be obtained by combining the Nehari method and an iterative tech...In this paper, we consider a class of Kirchhoff type problem with superlinear nonlinearity. A sign-changing solution with exactly two nodal domains will be obtained by combining the Nehari method and an iterative technique.展开更多
In this paper, we consider the existence of multiple solutions to the Kirchhoff problems with critical potential, critical exponent and a concave term. Our main tools are the Nehari manifold and mountain pass theorem.
Routh stability test is covered in almost all undergraduate control texts. It determines the stability or, a little beyond, the number of unstable roots of a polynomial in terms of the signs of certain entries of the ...Routh stability test is covered in almost all undergraduate control texts. It determines the stability or, a little beyond, the number of unstable roots of a polynomial in terms of the signs of certain entries of the Routh table constructed from the coefficients of the polynomial. The use of the Routh table, as far as the common textbooks show, is only limited to this function. We will show that the Routh table can actually be used to construct an orthonormal basis in the space of strictly proper rational functions with a common stable denominator. This orthonormal basis can then be used for many other purposes, including the computation of the H2 norm, the Hankel singular values and singular vectors, model reduction, H∞ optimization, etc. Keywords Routh stablity criterion - Orthonormal basis - Root-mean-squared value - Hankel operater - Nehari problem - Model reduction This work was supported by the Hong Kong Research Grants Council.展开更多
In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we ...In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.展开更多
文摘In this paper, we consider a class of Kirchhoff type problem with superlinear nonlinearity. A sign-changing solution with exactly two nodal domains will be obtained by combining the Nehari method and an iterative technique.
文摘In this paper, we consider the existence of multiple solutions to the Kirchhoff problems with critical potential, critical exponent and a concave term. Our main tools are the Nehari manifold and mountain pass theorem.
文摘Routh stability test is covered in almost all undergraduate control texts. It determines the stability or, a little beyond, the number of unstable roots of a polynomial in terms of the signs of certain entries of the Routh table constructed from the coefficients of the polynomial. The use of the Routh table, as far as the common textbooks show, is only limited to this function. We will show that the Routh table can actually be used to construct an orthonormal basis in the space of strictly proper rational functions with a common stable denominator. This orthonormal basis can then be used for many other purposes, including the computation of the H2 norm, the Hankel singular values and singular vectors, model reduction, H∞ optimization, etc. Keywords Routh stablity criterion - Orthonormal basis - Root-mean-squared value - Hankel operater - Nehari problem - Model reduction This work was supported by the Hong Kong Research Grants Council.
文摘In this paper, we study the multiplicity results of positive solutions for a class of quasi-linear elliptic equations involving critical Sobolev exponent. With the help of Nehari manifold and a mini-max principle, we prove that problem admits at least two or three positive solutions under different conditions.