A strong chiral near-field plays significant roles in the detection,separation and sensing of chiral molecules.In this paper,a simple and symmetric metasurface is proposed to generate strong chiral near-fields with bo...A strong chiral near-field plays significant roles in the detection,separation and sensing of chiral molecules.In this paper,a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region.Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light,there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude.As expected,the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets,as well as the permittivity of the substrate.Meanwhile,based on the interaction between the incident field and scattered field,the one-handed chiral nearfield in the gap also could be generated by the linearly polarized light excitation.For the two cases,the handedness of the chiral near-field could be switched by the polarized direction of the incident light.These results have potential opportunities for applications in molecular detection and sensing.展开更多
Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especial...Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especially continuous wave(CW)THz near-field scanning microscopy(THz-SNOM)with its nanoscale reso⁃lution,can be promising in biomedical imaging.In addition,compared with traditional THz time-domain spec⁃troscopy(TDS),portable solid-state source as the emission has higher power and SNR,lower cost,and can ob⁃tain more precise imaging.In this study,we employ CW THz-SNOM to further break the resolution limitations of conventional THz imaging techniques and successfully achieve the near-field imaging of demineralized enamel at the nanoscale.We keenly observe that the near-field signal of the enamel significantly lowers as demineralization deepens,mainly due to the decrease in permittivity.This new approach offers valuable insights into the micro⁃scopic processes of enamel demineralization,laying the foundation for further research and treatment.展开更多
This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle mo...This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle modulation of turbulence. The particles mainly excite the initial instability of the jet and bring about the earlier breakup of vortex rings in the near-field. The flow fluc- tuating intensity either in the axial or in the radial directions is hence increased by particles. The article also describes the mean velocity modulated by particles. The changing statistical velocity induced by particle modulation implies the effects of modulation of the local flow structures. This study is expected to be useful to the control of two-phase turbulent jets.展开更多
Extremely large-scale multiple-input multiple-output(XL-MIMO)is regarded as a promis-ing technology for next-generation communication systems.However,this will expand the near-field(NF)range,rendering more users more ...Extremely large-scale multiple-input multiple-output(XL-MIMO)is regarded as a promis-ing technology for next-generation communication systems.However,this will expand the near-field(NF)range,rendering more users more likely to be located in the NF region.In this paper,we aim to answer two questions:What are the new characteristics of the NF channel?Is it necessary to develop new transciver techniques to maintain system performance within the NF region?To this end,we first review current NF channel models and analyze the differences between the existing 3GPP TR 38.901 channel model and the NF channel model,including the spherical wavefront and spatially non-stationarity.Then,we provide ex-amples on how these differences affect the XL-MIMO system performance in terms of beamforming gain and achievable rate.Simulation results demonstrate that,when using far-field(FF)technique under the NF channel,the maximum normalized beam gain loss is less than 3 dB for most users in the NF region de-fined by Rayleigh distance.Moreover,the achievable rate loss of beam training is less than 3%compared to that realized by NF technique.Finally,we demonstrate the necessity of employing NF transceiver techniques based on simulation results.展开更多
With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has b...With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.展开更多
The fabrication of nanostructures beyond the diffraction limit has been the focus of nanotechnology research.Scanning probe microscopy(SPM)has attracted the attention of researchers for the detection and manufacture o...The fabrication of nanostructures beyond the diffraction limit has been the focus of nanotechnology research.Scanning probe microscopy(SPM)has attracted the attention of researchers for the detection and manufacture of nanostructures.Here,a nanosecond laser irradiated a cantilevered scanning nearfield optical microscopy(SNOM)tip and directly wrote subwavelength nanostructures on Au nano-film,without the assistance of a mask or vacuum atmosphere.This method was stable and reproducible for long-term use.The in situ morphology detection was conducted after the writing process by atomic force microscope(AFM).A feature linewidth of approximately 83.6 nm(<k/6)was confirmed using scanning electron microscopy(SEM).Linewidth of(167.8±6.6)nm was reproduced stably.Theoretical calculations revealed that the elliptical heat distribution under the SNOM tip generated different linewidths when the tip scanned vertically and horizontally.It also interpreted the influential mechanism of single-pulse energy.The simulated linewidths were consistent with the fabricated linewidths.According to the elemental analysis by energy dispersive spectrometer(EDS),the mechanism of this method can be interpreted asmelting of the Au nano-film instead of oxidation.Owing to its high positioning,machining accuracy,and instantaneous energy,this technology is considered convenient and economical for nanostructure fabrication and is proposed to be applied in nanolithography on multiple materials in the future.展开更多
Predictions of extreme near-field blast wave for cylindrical charge is crucial for designing sympathetic detonation protection structures,yet the quantitative analysis of detonation products and shock wave field are s...Predictions of extreme near-field blast wave for cylindrical charge is crucial for designing sympathetic detonation protection structures,yet the quantitative analysis of detonation products and shock wave field are still insufficient.The present work conducted experiments and numerical simulations of nearfield explosion for kilogram scale cylindrical charge,and investigated the propagation and spatial distribution characteristics of incident and reflected blast waves.The results show that near-field reflected overpressure exhibits multi-peak structures,which are primarily governed by reflections of detonation products and shock wave.The reflected peak overpressure dominated by detonation products shows higher sensitivity to scaled distance.Meanwhile,the Rayleigh-Taylor instability(RTI)effect induces the evolutions of detonation products and shock wave interface from smooth to random microjets,increasing dispersion of secondary re flected peak overpressure.In free-field explosion,the incident peak overpressure exhibits a dual-peak structure,governed by the shock wave front and detonation products flowing past the gauge points.The incident peak overpressure dominated by detonation products is sensitive to orientations due to the charge structures.As the aspect ratio of charge increases from 0.6 to 8,the dominant radial azimuth angle region expands from 60°-90°to 30°-90°.An empirical model was developed to predict the spatial distributions of incident peak loads at arbitrary orientations for cylindrical charge with 0.6≤L/D≤8.0 and 0.06 m·kg^(-1/3)展开更多
To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and ...To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings.展开更多
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste...To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.展开更多
Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets...Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.展开更多
Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6 G communications.Beam training is an effective way to acquir...Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6 G communications.Beam training is an effective way to acquire channel state information(CSI)for XL-RIS.Existing beam training schemes rely on the far-field codebook.However,due to the large aperture of XL-RIS,the scatters are more likely to be in the near-field region of XL-RIS.The far-field codebook mismatches the near-field channel model.Thus,the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted nearfield communications.To solve this problem,we propose the efficient near-field beam training schemes by designing the near-field codebook to match the nearfield channel model.Specifically,we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS.Then,the optimal codeword for XL-RIS is obtained by the exhausted training procedure.To reduce the beam training overhead,we further design a hierarchical nearfield codebook and propose the corresponding hierarchical near-field beam training scheme,where different levels of sub-codebooks are searched in turn with reduced codebook size.Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme.展开更多
Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl p...Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm 900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.展开更多
On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftersh...On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftershocks within the first 60 hours to determine the focal mechanism solutions of the mainshock and some of the aftershocks and to invert for the finite-fault model of the mainshock.The focal mechanism solution of the mainshock and the relocation results of the aftershocks constrain the mainshock on a nearly vertical fault plane striking northeast and dipping to the southeast. The inversion of the finite-fault model reveals only a single slip asperity on the fault plane. The major slip is distributed above the initiation point, ~14 km wide along the down-dip direction and ~14 km long along the strike direction, with a maximal slip of ~22 cm at a depth of ~6 km. The focal mechanism solutions of the aftershocks show that most of the aftershocks are of the strike-slip type, a number of them are of the normal-slip type, and only a few of them are of the thrust-slip type.On average, strike-slip is dominant on the fault plane of the mainshock, as the focal mechanism solution of the mainshock suggests, but when examined in detail, slight thrust-slip appears on the southwest of the fault plane while an obvious part of normal-slip appears on the northeast, which is consistent with what the focal mechanism solutions of the aftershocks display. The multiple types of aftershock focal mechanism solutions and the slip details of the mainshock both suggest a complex tectonic setting, stress setting, or both. The intensity contours predicted exhibit a longer axis trending from northeast to southwest and a maximal intensity of Ⅷ around the epicenter and in the northwest.展开更多
In order to develop the acoustic keyboard for Personal Computer(PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing pro...In order to develop the acoustic keyboard for Personal Computer(PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing property of Time Reversal Mirror(TRM) is introduced,and then a mathe-matical model of microphone array receiving typing sound is established according to the realization of acoustic keyboard from which the TRM localization algorithm is carried out.The results through computer simulation show that the localization Root Mean Square Error(RMSE) performance of the algorithm can reach 10-3,which demonstrates that the algorithm possesses a high accuracy for the actual near-field acoustic source localization,with potential of developing the computer acoustic keyboard.Furthermore,for the purpose of testing its effect on actual near-field source localization,we organize three experiments for acoustic keyboard characters localization.The experiment results show that the positioning error of TRM algorithm is less than 1 cm within a provided acoustic keyboard region.This will provide theoretical guidance for the further research of computer acoustic keyboard.展开更多
The April 20, 2013, Ms7.0 Lushan earthquake was successfully recorded by closely spaced Continuous Global Positioning System (CGPS) stations owned by the Crustal Movement Observation Network of Chi- na (CMONC). Th...The April 20, 2013, Ms7.0 Lushan earthquake was successfully recorded by closely spaced Continuous Global Positioning System (CGPS) stations owned by the Crustal Movement Observation Network of Chi- na (CMONC). The 1-Hz GNSS data from eight CGPS stations, which are located between 30 km and 200 km from the hypocenter, were processed within quasi-real-time. The near-field surface deformation indicated the following characteristics : the near-field movements were limited to several centimeters ; the peak of the deformation wave was significantly larger than the static permanent offset; at the beginning of the event, the north wall of the fault moved to the southeast as the south wall moved to the southwest ; station SCTQ, which was the closest station to the hypocenter at 30 km, had the largest static permanent displacement of 2 cm; the peaks of the deformation waves were 1.5 cm, 5 cm and 3 cm, to the east, the south and vertically upward, respectively ; and the peaks of velocity and acceleration, derived from the deformation, were 3.4 cm/s and 5.3 cm/s^2,respectively.展开更多
In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for app...In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.展开更多
On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presen...On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield.展开更多
In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the subs...In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the substrate-integrated split-ring resonator(SI-SRR),is firstly proposed to achieve negative permeability at the antenna operating frequency.By integrating SI-SRR in between two closely spaced antennas,magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR,reducing NFMC between the two antennas.To verify the technique,a prototype was fabricated and measured.The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067 A.Due to high integration,this technique provides an effective alternative to high-isolation antenna array.展开更多
A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of t...A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).展开更多
This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly m...This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11804035)Science and Technology Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1706153)。
文摘A strong chiral near-field plays significant roles in the detection,separation and sensing of chiral molecules.In this paper,a simple and symmetric metasurface is proposed to generate strong chiral near-fields with both circularly polarized light and linearly polarized light illuminations in the mid-infrared region.Owing to the near-field interaction between plasmonic resonant modes of two nanosheets excited by circularly polarized light,there is a strong single-handed chiral near-field in the gap between the two graphene nanosheets and the maximum enhancement of the optical chirality could reach two orders of magnitude.As expected,the intensity and the response wavelength of the chiral near-fields could be controlled by the Fermi level and geometrical parameters of the graphene nanosheets,as well as the permittivity of the substrate.Meanwhile,based on the interaction between the incident field and scattered field,the one-handed chiral nearfield in the gap also could be generated by the linearly polarized light excitation.For the two cases,the handedness of the chiral near-field could be switched by the polarized direction of the incident light.These results have potential opportunities for applications in molecular detection and sensing.
基金Supported by the National Natural Science Foundation of China(61988102,62401113,92463308)。
文摘Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especially continuous wave(CW)THz near-field scanning microscopy(THz-SNOM)with its nanoscale reso⁃lution,can be promising in biomedical imaging.In addition,compared with traditional THz time-domain spec⁃troscopy(TDS),portable solid-state source as the emission has higher power and SNR,lower cost,and can ob⁃tain more precise imaging.In this study,we employ CW THz-SNOM to further break the resolution limitations of conventional THz imaging techniques and successfully achieve the near-field imaging of demineralized enamel at the nanoscale.We keenly observe that the near-field signal of the enamel significantly lowers as demineralization deepens,mainly due to the decrease in permittivity.This new approach offers valuable insights into the micro⁃scopic processes of enamel demineralization,laying the foundation for further research and treatment.
基金National Natural Science Foundation of China (50706021)Ph.D.Programs Foundation of Ministry of Education of China (20070003018)TNList Cross-discipline Foundation
文摘This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle modulation of turbulence. The particles mainly excite the initial instability of the jet and bring about the earlier breakup of vortex rings in the near-field. The flow fluc- tuating intensity either in the axial or in the radial directions is hence increased by particles. The article also describes the mean velocity modulated by particles. The changing statistical velocity induced by particle modulation implies the effects of modulation of the local flow structures. This study is expected to be useful to the control of two-phase turbulent jets.
基金supported by the National Key R&D Program of China(No.2023YFB2904803)the Beijing Natural Science Foundation(L243002),the National Natural Science Foundation of China(No.62341128)+2 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2023B0303000001)the National Natural Science Foundation of China(No.62201086)Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center.
文摘Extremely large-scale multiple-input multiple-output(XL-MIMO)is regarded as a promis-ing technology for next-generation communication systems.However,this will expand the near-field(NF)range,rendering more users more likely to be located in the NF region.In this paper,we aim to answer two questions:What are the new characteristics of the NF channel?Is it necessary to develop new transciver techniques to maintain system performance within the NF region?To this end,we first review current NF channel models and analyze the differences between the existing 3GPP TR 38.901 channel model and the NF channel model,including the spherical wavefront and spatially non-stationarity.Then,we provide ex-amples on how these differences affect the XL-MIMO system performance in terms of beamforming gain and achievable rate.Simulation results demonstrate that,when using far-field(FF)technique under the NF channel,the maximum normalized beam gain loss is less than 3 dB for most users in the NF region de-fined by Rayleigh distance.Moreover,the achievable rate loss of beam training is less than 3%compared to that realized by NF technique.Finally,we demonstrate the necessity of employing NF transceiver techniques based on simulation results.
基金supported by the Dong-A University of the Republic of Korea research fund。
文摘With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.
基金supported by the National Key Research and Development Program of China(2023YFB4605100)the Shaanxi Provincial Key Research and Development Program(2019ZDLGY01-09 and 2021ZDLGY10-02)the State Key Laboratory of Solidification Processing(SKLSP202203).
文摘The fabrication of nanostructures beyond the diffraction limit has been the focus of nanotechnology research.Scanning probe microscopy(SPM)has attracted the attention of researchers for the detection and manufacture of nanostructures.Here,a nanosecond laser irradiated a cantilevered scanning nearfield optical microscopy(SNOM)tip and directly wrote subwavelength nanostructures on Au nano-film,without the assistance of a mask or vacuum atmosphere.This method was stable and reproducible for long-term use.The in situ morphology detection was conducted after the writing process by atomic force microscope(AFM).A feature linewidth of approximately 83.6 nm(<k/6)was confirmed using scanning electron microscopy(SEM).Linewidth of(167.8±6.6)nm was reproduced stably.Theoretical calculations revealed that the elliptical heat distribution under the SNOM tip generated different linewidths when the tip scanned vertically and horizontally.It also interpreted the influential mechanism of single-pulse energy.The simulated linewidths were consistent with the fabricated linewidths.According to the elemental analysis by energy dispersive spectrometer(EDS),the mechanism of this method can be interpreted asmelting of the Au nano-film instead of oxidation.Owing to its high positioning,machining accuracy,and instantaneous energy,this technology is considered convenient and economical for nanostructure fabrication and is proposed to be applied in nanolithography on multiple materials in the future.
基金supported by the National Natural Science Foundation of China(No.12172051,12172050,12141201,and 12221002)。
文摘Predictions of extreme near-field blast wave for cylindrical charge is crucial for designing sympathetic detonation protection structures,yet the quantitative analysis of detonation products and shock wave field are still insufficient.The present work conducted experiments and numerical simulations of nearfield explosion for kilogram scale cylindrical charge,and investigated the propagation and spatial distribution characteristics of incident and reflected blast waves.The results show that near-field reflected overpressure exhibits multi-peak structures,which are primarily governed by reflections of detonation products and shock wave.The reflected peak overpressure dominated by detonation products shows higher sensitivity to scaled distance.Meanwhile,the Rayleigh-Taylor instability(RTI)effect induces the evolutions of detonation products and shock wave interface from smooth to random microjets,increasing dispersion of secondary re flected peak overpressure.In free-field explosion,the incident peak overpressure exhibits a dual-peak structure,governed by the shock wave front and detonation products flowing past the gauge points.The incident peak overpressure dominated by detonation products is sensitive to orientations due to the charge structures.As the aspect ratio of charge increases from 0.6 to 8,the dominant radial azimuth angle region expands from 60°-90°to 30°-90°.An empirical model was developed to predict the spatial distributions of incident peak loads at arbitrary orientations for cylindrical charge with 0.6≤L/D≤8.0 and 0.06 m·kg^(-1/3)
基金The National Natural Science Foundation of China(No.52208195)the Independent Subject of State Key Laboratory of Disaster Reduction in Civil Engineering of Tongji University(No.SLDRCE19-A-10).
文摘To improve the seismic performance of unrein-forced masonry(URM)buildings in the Himalayan re-gions,including Western China,India,Nepal,and Paki-stan,a low-cost bonded scrap tire rubber isolator(BSTRI)is proposed,and a series of vertical compression and horizontal shear tests are conducted.Incremental dynamic analyses are conducted for five types of BSTRI-supported URM buildings subjected to 22 far-field and 28 near-field earthquake ground motions.The resulting fragility curves and probability of damage curves are presented and utilized to evaluate the damage states of these buildings.The results show that in the base-isolated(BI)URM buildings under seismic ground motion at a peak ground acceleration(PGA)of 1.102g,the probability of exceeding the collapse prevention threshold is less than 25%under far-field earthquake ground motions and 31%under near-field earthquake ground motions.Furthermore,the maximum average vulnerability index for the BI-URM buildings,which are designed to withstand rare earthquakes with 9°(PGA=0.632g),is 40.87%for far-field earthquake ground motions and 41.83%for near-field earthquake ground motions.Therefore,the adoption of BSTRIs can significantly reduce the collapse probability of URM buildings.
文摘To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.
基金supported by the Geosciences and Technology Academy of China University of Petroleum(East China)
文摘Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1807205)in part by the National Natural Science Foundation of China(Grant No.62031019)in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256。
文摘Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6 G communications.Beam training is an effective way to acquire channel state information(CSI)for XL-RIS.Existing beam training schemes rely on the far-field codebook.However,due to the large aperture of XL-RIS,the scatters are more likely to be in the near-field region of XL-RIS.The far-field codebook mismatches the near-field channel model.Thus,the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted nearfield communications.To solve this problem,we propose the efficient near-field beam training schemes by designing the near-field codebook to match the nearfield channel model.Specifically,we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS.Then,the optimal codeword for XL-RIS is obtained by the exhausted training procedure.To reduce the beam training overhead,we further design a hierarchical nearfield codebook and propose the corresponding hierarchical near-field beam training scheme,where different levels of sub-codebooks are searched in turn with reduced codebook size.Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074138, 11004114, and 50973098)the Natural Science Foundation of Shandong Province for Distinguished Young Scholars (Grant No. JQ201103)the National Key Basic Research Development Program of China (Grant No. 2012CB722705)
文摘Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm 900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.
基金supported by the National Natural Science Foundation of China(project 41804088)the Special Fund of the Institute of Geophysics,China Earthquake Administration(project DQJB19B08)
文摘On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftershocks within the first 60 hours to determine the focal mechanism solutions of the mainshock and some of the aftershocks and to invert for the finite-fault model of the mainshock.The focal mechanism solution of the mainshock and the relocation results of the aftershocks constrain the mainshock on a nearly vertical fault plane striking northeast and dipping to the southeast. The inversion of the finite-fault model reveals only a single slip asperity on the fault plane. The major slip is distributed above the initiation point, ~14 km wide along the down-dip direction and ~14 km long along the strike direction, with a maximal slip of ~22 cm at a depth of ~6 km. The focal mechanism solutions of the aftershocks show that most of the aftershocks are of the strike-slip type, a number of them are of the normal-slip type, and only a few of them are of the thrust-slip type.On average, strike-slip is dominant on the fault plane of the mainshock, as the focal mechanism solution of the mainshock suggests, but when examined in detail, slight thrust-slip appears on the southwest of the fault plane while an obvious part of normal-slip appears on the northeast, which is consistent with what the focal mechanism solutions of the aftershocks display. The multiple types of aftershock focal mechanism solutions and the slip details of the mainshock both suggest a complex tectonic setting, stress setting, or both. The intensity contours predicted exhibit a longer axis trending from northeast to southwest and a maximal intensity of Ⅷ around the epicenter and in the northwest.
文摘In order to develop the acoustic keyboard for Personal Computer(PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing property of Time Reversal Mirror(TRM) is introduced,and then a mathe-matical model of microphone array receiving typing sound is established according to the realization of acoustic keyboard from which the TRM localization algorithm is carried out.The results through computer simulation show that the localization Root Mean Square Error(RMSE) performance of the algorithm can reach 10-3,which demonstrates that the algorithm possesses a high accuracy for the actual near-field acoustic source localization,with potential of developing the computer acoustic keyboard.Furthermore,for the purpose of testing its effect on actual near-field source localization,we organize three experiments for acoustic keyboard characters localization.The experiment results show that the positioning error of TRM algorithm is less than 1 cm within a provided acoustic keyboard region.This will provide theoretical guidance for the further research of computer acoustic keyboard.
基金supported by the National Natural Science Foundation of China(41274027)the Director Foundation of Institute of Seismology, China Earthquake Administration(IS201156063)
文摘The April 20, 2013, Ms7.0 Lushan earthquake was successfully recorded by closely spaced Continuous Global Positioning System (CGPS) stations owned by the Crustal Movement Observation Network of Chi- na (CMONC). The 1-Hz GNSS data from eight CGPS stations, which are located between 30 km and 200 km from the hypocenter, were processed within quasi-real-time. The near-field surface deformation indicated the following characteristics : the near-field movements were limited to several centimeters ; the peak of the deformation wave was significantly larger than the static permanent offset; at the beginning of the event, the north wall of the fault moved to the southeast as the south wall moved to the southwest ; station SCTQ, which was the closest station to the hypocenter at 30 km, had the largest static permanent displacement of 2 cm; the peaks of the deformation waves were 1.5 cm, 5 cm and 3 cm, to the east, the south and vertically upward, respectively ; and the peaks of velocity and acceleration, derived from the deformation, were 3.4 cm/s and 5.3 cm/s^2,respectively.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020LLZ004)the National Natural Science Foundation of China (Grant No.52106099),the National Natural Science Foundation of China (Grant No.52076056)the Fundamental Research Funds for the Central Universities (Grant No.AUGA5710094020)。
文摘In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer(NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201405026the National Key Research and Development Program of China under contract No.2016YFC1401500the Opening Fund of State Key Laboratory of Ocean Engineering under contract No.1604
文摘On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.61331005,61471388,61501503,61501502,61501497,51575524,61302023,and 11304393)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2015JM6300 and 2015JM6277)
文摘In this paper,we propose the decoupling technique of patch antenna array by suppressing near-field magnetic coupling(NFMC) using magnetic metamaterials.To this end,a highly-integrated magnetic metamaterials,the substrate-integrated split-ring resonator(SI-SRR),is firstly proposed to achieve negative permeability at the antenna operating frequency.By integrating SI-SRR in between two closely spaced antennas,magnetic fields are blocked in the shared substrate due to negative permeability of SI-SRR,reducing NFMC between the two antennas.To verify the technique,a prototype was fabricated and measured.The measured results demonstrated that the isolation can be enhanced by more than 17 dB even when the gap between the two patch antennas is only about 0.067 A.Due to high integration,this technique provides an effective alternative to high-isolation antenna array.
基金supported by the National Natural Science Foundation of China(61771369 61775219+5 种基金 61640422)the Fundamental Research Funds for the Central Universities(JB180310)the Equipment Research Program of the Chinese Academy of Sciences(YJKYYQ20180039)the Shaanxi Provincial Key R&D Program(2018SF-409 2018ZDXM-SF-027)the Natural Science Basic Research Plan
文摘A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).
基金supported by the National Key R&D Program of China with Grant number 2019YFB1803400the National Natural Science Foundation of China under Grant number 62071114the Fundamental Research Funds for the Central Universities of China under grant numbers 3204002004A2 and 2242022k30005。
文摘This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.