To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be t...To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be too low and fewer fingerprints could lead to low accuracy. It can be proved that the efficiency of similarity retrieval is improved by fingerprint group merging retrieval algorithm with lower similarity threshold. Experiments with the lower similarity threshold r=0.7 and high fingerprint bits k=400 demonstrate that the CPU time-consuming cost decreases from 1 921 s to 273 s. Theoretical analysis and experimental results verify the effectiveness of this method.展开更多
Emerging Internet services and applications attract increasing users to involve in diverse video-related activities,such as video searching,video downloading,video sharing and so on.As normal operations,they lead to a...Emerging Internet services and applications attract increasing users to involve in diverse video-related activities,such as video searching,video downloading,video sharing and so on.As normal operations,they lead to an explosive growth of online video volume,and inevitably give rise to the massive near-duplicate contents.Near-duplicate video retrieval(NDVR)has always been a hot topic.The primary purpose of this paper is to present a comprehensive survey and an updated review of the advance on large-scale NDVR to supply guidance for researchers.Specifically,we summarize and compare the definitions of near-duplicate videos(NDVs)in the literature,analyze the relationship between NDVR and its related research topics theoretically,describe its generic framework in detail,investigate the existing state-of-the-art NDVR systems.Finally,we present the development trends and research directions of this topic.展开更多
that are duplicate or near duplicate to a query image.One of the most popular and practical methods in near-duplicate image retrieval is based on bag-of-words(BoW)model.However,the fundamental deficiency of current Bo...that are duplicate or near duplicate to a query image.One of the most popular and practical methods in near-duplicate image retrieval is based on bag-of-words(BoW)model.However,the fundamental deficiency of current BoW method is the gap between visual word and image’s semantic meaning.Similar problem also plagues existing text retrieval.A prevalent method against such issue in text retrieval is to eliminate text synonymy and polysemy and therefore improve the whole performance.Our proposed approach borrows ideas from text retrieval and tries to overcome these deficiencies of BoW model by treating the semantic gap problem as visual synonymy and polysemy issues.We use visual synonymy in a very general sense to describe the fact that there are many different visual words referring to the same visual meaning.By visual polysemy,we refer to the general fact that most visual words have more than one distinct meaning.To eliminate visual synonymy,we present an extended similarity function to implicitly extend query visual words.To eliminate visual polysemy,we use visual pattern and prove that the most efficient way of using visual pattern is merging visual word vector together with visual pattern vector and obtain the similarity score by cosine function.In addition,we observe that there is a high possibility that duplicates visual words occur in an adjacent area.Therefore,we modify traditional Apriori algorithm to mine quantitative pattern that can be defined as patterns containing duplicate items.Experiments prove quantitative patterns improving mean average precision(MAP)significantly.展开更多
Near-duplicate image detection is a necessary operation to refine image search results for efficient user exploration. The existences of large amounts of near duplicates require fast and accurate automatic near-duplic...Near-duplicate image detection is a necessary operation to refine image search results for efficient user exploration. The existences of large amounts of near duplicates require fast and accurate automatic near-duplicate detection methods. We have designed a coarse-to-fine near duplicate detection framework to speed-up the process and a multi-modal integra-tion scheme for accurate detection. The duplicate pairs are detected with both global feature (partition based color his-togram) and local feature (CPAM and SIFT Bag-of-Word model). The experiment results on large scale data set proved the effectiveness of the proposed design.展开更多
The massive web videos prompt an imperative demand on efficiently grasping the major events. However, the distinct characteristics of web videos, such as the limited number of features, the noisy text information, and...The massive web videos prompt an imperative demand on efficiently grasping the major events. However, the distinct characteristics of web videos, such as the limited number of features, the noisy text information, and the unavoidable error in near-duplicate keyframes (NDKs) detection, make web video event mining a challenging task. In this paper, we propose a novel four-stage framework to improve the performance of web video event mining. Data preprocessing is the first stage. Multiple Correspondence Analysis (MCA) is then applied to explore the correlation between terms and classes, targeting for bridging the gap between NDKs and high-level semantic concepts. Next, co-occurrence information is used to detect the similarity between NDKs and classes using the NDK-within-video information. Finally, both of them are integrated for web video event mining through negative NDK pruning and positive NDK enhancement. Moreover, both NDKs and terms with relatively low frequencies are treated as useful information in our experiments. Experimental results on large-scale web videos from YouTube demonstrate that the proposed framework outperforms several existing mining methods and obtains good results for web video event mining.展开更多
基金Project(60873081) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787) supported by the Program for New Century Excellent Talents in University, ChinaProject(11JJ1012) supported by the Natural Science Foundation of Hunan Province, China
文摘To quickly find documents with high similarity in existing documentation sets, fingerprint group merging retrieval algorithm is proposed to address both sides of the problem:a given similarity threshold could not be too low and fewer fingerprints could lead to low accuracy. It can be proved that the efficiency of similarity retrieval is improved by fingerprint group merging retrieval algorithm with lower similarity threshold. Experiments with the lower similarity threshold r=0.7 and high fingerprint bits k=400 demonstrate that the CPU time-consuming cost decreases from 1 921 s to 273 s. Theoretical analysis and experimental results verify the effectiveness of this method.
基金The work was supported by the National Natural Science Foundation of China(Grant Nos.61722204,61732007 and 61632007).
文摘Emerging Internet services and applications attract increasing users to involve in diverse video-related activities,such as video searching,video downloading,video sharing and so on.As normal operations,they lead to an explosive growth of online video volume,and inevitably give rise to the massive near-duplicate contents.Near-duplicate video retrieval(NDVR)has always been a hot topic.The primary purpose of this paper is to present a comprehensive survey and an updated review of the advance on large-scale NDVR to supply guidance for researchers.Specifically,we summarize and compare the definitions of near-duplicate videos(NDVs)in the literature,analyze the relationship between NDVR and its related research topics theoretically,describe its generic framework in detail,investigate the existing state-of-the-art NDVR systems.Finally,we present the development trends and research directions of this topic.
文摘that are duplicate or near duplicate to a query image.One of the most popular and practical methods in near-duplicate image retrieval is based on bag-of-words(BoW)model.However,the fundamental deficiency of current BoW method is the gap between visual word and image’s semantic meaning.Similar problem also plagues existing text retrieval.A prevalent method against such issue in text retrieval is to eliminate text synonymy and polysemy and therefore improve the whole performance.Our proposed approach borrows ideas from text retrieval and tries to overcome these deficiencies of BoW model by treating the semantic gap problem as visual synonymy and polysemy issues.We use visual synonymy in a very general sense to describe the fact that there are many different visual words referring to the same visual meaning.By visual polysemy,we refer to the general fact that most visual words have more than one distinct meaning.To eliminate visual synonymy,we present an extended similarity function to implicitly extend query visual words.To eliminate visual polysemy,we use visual pattern and prove that the most efficient way of using visual pattern is merging visual word vector together with visual pattern vector and obtain the similarity score by cosine function.In addition,we observe that there is a high possibility that duplicates visual words occur in an adjacent area.Therefore,we modify traditional Apriori algorithm to mine quantitative pattern that can be defined as patterns containing duplicate items.Experiments prove quantitative patterns improving mean average precision(MAP)significantly.
文摘Near-duplicate image detection is a necessary operation to refine image search results for efficient user exploration. The existences of large amounts of near duplicates require fast and accurate automatic near-duplicate detection methods. We have designed a coarse-to-fine near duplicate detection framework to speed-up the process and a multi-modal integra-tion scheme for accurate detection. The duplicate pairs are detected with both global feature (partition based color his-togram) and local feature (CPAM and SIFT Bag-of-Word model). The experiment results on large scale data set proved the effectiveness of the proposed design.
基金supported by the National Natural Science Foundation of China under Grant Nos. 61373121, 61071184, 60972111,61036008the Research Funds for the Doctoral Program of Higher Education of China under Grant No. 20100184120009+2 种基金the Program for Sichuan Provincial Science Fund for Distinguished Young Scholars under Grant Nos. 2012JQ0029, 13QNJJ0149the Fundamental Research Funds for the Central Universities of China under Grant Nos. SWJTU09CX032, SWJTU10CX08the Program of China Scholarships Council under Grant No. 201207000050
文摘The massive web videos prompt an imperative demand on efficiently grasping the major events. However, the distinct characteristics of web videos, such as the limited number of features, the noisy text information, and the unavoidable error in near-duplicate keyframes (NDKs) detection, make web video event mining a challenging task. In this paper, we propose a novel four-stage framework to improve the performance of web video event mining. Data preprocessing is the first stage. Multiple Correspondence Analysis (MCA) is then applied to explore the correlation between terms and classes, targeting for bridging the gap between NDKs and high-level semantic concepts. Next, co-occurrence information is used to detect the similarity between NDKs and classes using the NDK-within-video information. Finally, both of them are integrated for web video event mining through negative NDK pruning and positive NDK enhancement. Moreover, both NDKs and terms with relatively low frequencies are treated as useful information in our experiments. Experimental results on large-scale web videos from YouTube demonstrate that the proposed framework outperforms several existing mining methods and obtains good results for web video event mining.