The crystallographic and the magnetic structures of the composite compound Nd2Co7 at 300 K are investigated by a combined refinement of X-ray diffraction data and high-resolution neutron diffraction data. The compound...The crystallographic and the magnetic structures of the composite compound Nd2Co7 at 300 K are investigated by a combined refinement of X-ray diffraction data and high-resolution neutron diffraction data. The compound crystallizes into a hexagonal Ce2NiT-type structure and consists of alternately stacking MgZn2-type NdCo2 and CaCus-type NdCo5 structural blocks along the c axis. A magnetic structure model with the moments of all atoms aligning along the c axis provides a satisfactory fitting to the neutron diffraction data and coincides with the easy magnetization direction revealed by the X-ray diffraction experiments on magnetically pre-aligned fine particles. The refinement results show that the derived atomic moments of the Co atoms vary in a range of 0.7 μB-1.1 μB and the atomic moment of Nd in the NdCo5 slab is close to the theoretical moment of a free trivalent Nd3+ ion, whereas the atomic moment of Nd in the NdCo2 slab is much smaller than the theoretical value for a free Nd3+ ion. The remarkable difference in the atomic moment of Nd atoms between different structural slabs at room temperature is explained in terms of the magnetic characteristics of the NdCo2 and NdCo5 compounds and the local chemical environments of the Nd atoms in different structural slabs of the Nd2Co7 compound.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50631040)the National Basic Research Program of China (Grants Nos. 2006CB601101 and 2006CB605101)
文摘The crystallographic and the magnetic structures of the composite compound Nd2Co7 at 300 K are investigated by a combined refinement of X-ray diffraction data and high-resolution neutron diffraction data. The compound crystallizes into a hexagonal Ce2NiT-type structure and consists of alternately stacking MgZn2-type NdCo2 and CaCus-type NdCo5 structural blocks along the c axis. A magnetic structure model with the moments of all atoms aligning along the c axis provides a satisfactory fitting to the neutron diffraction data and coincides with the easy magnetization direction revealed by the X-ray diffraction experiments on magnetically pre-aligned fine particles. The refinement results show that the derived atomic moments of the Co atoms vary in a range of 0.7 μB-1.1 μB and the atomic moment of Nd in the NdCo5 slab is close to the theoretical moment of a free trivalent Nd3+ ion, whereas the atomic moment of Nd in the NdCo2 slab is much smaller than the theoretical value for a free Nd3+ ion. The remarkable difference in the atomic moment of Nd atoms between different structural slabs at room temperature is explained in terms of the magnetic characteristics of the NdCo2 and NdCo5 compounds and the local chemical environments of the Nd atoms in different structural slabs of the Nd2Co7 compound.