The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission...The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.展开更多
The glass forming ability (GFA), microstructure and magnetic property in (Nd60Al10Ni10)Cu20-xFex (0≤ x≤ 20) alloys were investigated by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), high re...The glass forming ability (GFA), microstructure and magnetic property in (Nd60Al10Ni10)Cu20-xFex (0≤ x≤ 20) alloys were investigated by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), high resolution transmission electron mi- croscopy (HRTEM) and magnetic property measurement. It is shown that the GFA of the alloys decreases with Fe content. The sam- ples for bulk cylinders with x≤10 show a distinct endothermic peak in the DSC traces due to a glass transition in the range of 421-438 K. With further increasing Fe, the glass transition is masked by the crystallization. The microstructure of the Nd-based alloy can change progressively from full glassy state into composite state with nanocrystalline particles in the glassy matrix indicating the glass forming ability degrades with increasing Fe. The average size of nanocrystals increases with Fe and the distribution changes from homogenous to heterogeneous. The magnetic property varies from paramagnetic to hard magnetic when the Fe content increases up to about 4at% indicating that the magnetic property is related to the metastable phases.展开更多
Nd60All0Co30-xNix (x=0, 5, 10 and 15 at. pct) metallic glasses have been prepared using single-spinner and suck-casting method, and characterized using X-ray diffrac- tion (XRD) and non-isothermal differential sca...Nd60All0Co30-xNix (x=0, 5, 10 and 15 at. pct) metallic glasses have been prepared using single-spinner and suck-casting method, and characterized using X-ray diffrac- tion (XRD) and non-isothermal differential scanning calorimetric technique. It has been found that the Mloy with 15 at. pct Ni has the strongest glass forming ability, and can be fabricated to a rod with 5 mm in diameter using suck-casting. The addition of Ni has an obvious effect on the thermal behavior of the metallic glasses, especially on the position of the second and third crystallization peaks. The crystallization ki- netics and activation energies of the four metallic glasses have been elaborated using the Kissinger equation. The continuous heating transformation curves of the T~ and Tpl have been constructed by applying the extension of the Vogel-Fulcher-Tammann (VFT) nonlinear equations, which are derived from the experimental data in the heat- ing rate range of 5-80 K/min. The effect of Ni on the formation and thermal stability of the Nd-based metallic glasses has been discussed.展开更多
The glass-forming ability (GFA) of Nd70-xFe2oAl10Yx and Nd60-xFe30Al10Yx (0< x <15) alloys produced by Cu mold casting was investigated. Except Y=5 at. pct, bulk amorphous Nd70-xFe20Al10Yx alloys up to 2 mm in d...The glass-forming ability (GFA) of Nd70-xFe2oAl10Yx and Nd60-xFe30Al10Yx (0< x <15) alloys produced by Cu mold casting was investigated. Except Y=5 at. pct, bulk amorphous Nd70-xFe20Al10Yx alloys up to 2 mm in diameter were obtained. The GFA for Nd60-xFe30Al10Yx alloys, however, was found to decrease with increase of Y due to the increasing compositional deviation from the original eutectic point of Nd60Fe30Al10 alloy. The Nd60Fe20Al10Y10 and Nd60Fe30Al10 alloy exhibit the largest GFA and can be cast into bulk amorphous cylindrical specimens of 3 mm in diameter. The melting temperature or/and the reduced crystallization temperature is closely related to the GFA of Y-containing alloys. The bulk amorphous cylinder for the Nd55Fe20Al10Y15 alloy shows a distinct glass transition temperature and a wide supercooled liquid region before crystallization. The crystallization temperature, Tg, and the supercooled liquid region, TX, are 776 K and 58 K, respectively. The GFA and thermal stability of the Nd-Fe-AI-Y alloys were discussed.展开更多
基金the National Natural Science Foundation of China (50571052)
文摘The effect of yttrium on the thermal stability and crystallization behavior of Nd-Fe-Al-Ni amorphous alloys was investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM).The results indicated that the as-cast Nd60Fe20Al10Ni10-xYx(X=-0, 2) amorphous alloys were fabricated with some quenched-in crystals, which could be restrained by Y. With the effect of yttrium, both the crystallization temperature and exothermic peak shifted to higher temperatures, illustrating that the thermal stability could be improved. The addition of Y changed the crystallization process and final crystallization results. Moreover, the crystallites in the amorphous matrix became more homogeneous and smaller. Meanwhile, Y was useful for the passivation of oxygen in chemistry and restrained the negative effect of oxygen. The activation energies of the start of crystallization and peaking were 1.21 and 1.16 eV, respectively, according to the Kissinger equation.
文摘The glass forming ability (GFA), microstructure and magnetic property in (Nd60Al10Ni10)Cu20-xFex (0≤ x≤ 20) alloys were investigated by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), high resolution transmission electron mi- croscopy (HRTEM) and magnetic property measurement. It is shown that the GFA of the alloys decreases with Fe content. The sam- ples for bulk cylinders with x≤10 show a distinct endothermic peak in the DSC traces due to a glass transition in the range of 421-438 K. With further increasing Fe, the glass transition is masked by the crystallization. The microstructure of the Nd-based alloy can change progressively from full glassy state into composite state with nanocrystalline particles in the glassy matrix indicating the glass forming ability degrades with increasing Fe. The average size of nanocrystals increases with Fe and the distribution changes from homogenous to heterogeneous. The magnetic property varies from paramagnetic to hard magnetic when the Fe content increases up to about 4at% indicating that the magnetic property is related to the metastable phases.
基金supported by the SRF for ROCS(State Education Ministry)the Fundamental Research Funds for the Central University,P.R.China(Grant Nos.N100409001 and N090209001)
文摘Nd60All0Co30-xNix (x=0, 5, 10 and 15 at. pct) metallic glasses have been prepared using single-spinner and suck-casting method, and characterized using X-ray diffrac- tion (XRD) and non-isothermal differential scanning calorimetric technique. It has been found that the Mloy with 15 at. pct Ni has the strongest glass forming ability, and can be fabricated to a rod with 5 mm in diameter using suck-casting. The addition of Ni has an obvious effect on the thermal behavior of the metallic glasses, especially on the position of the second and third crystallization peaks. The crystallization ki- netics and activation energies of the four metallic glasses have been elaborated using the Kissinger equation. The continuous heating transformation curves of the T~ and Tpl have been constructed by applying the extension of the Vogel-Fulcher-Tammann (VFT) nonlinear equations, which are derived from the experimental data in the heat- ing rate range of 5-80 K/min. The effect of Ni on the formation and thermal stability of the Nd-based metallic glasses has been discussed.
基金This work was performed with the support of the National Development Project for Basic Scientific Research of China under grant number G2000067201 as well as the fund for the best doctor dissertation .
文摘The glass-forming ability (GFA) of Nd70-xFe2oAl10Yx and Nd60-xFe30Al10Yx (0< x <15) alloys produced by Cu mold casting was investigated. Except Y=5 at. pct, bulk amorphous Nd70-xFe20Al10Yx alloys up to 2 mm in diameter were obtained. The GFA for Nd60-xFe30Al10Yx alloys, however, was found to decrease with increase of Y due to the increasing compositional deviation from the original eutectic point of Nd60Fe30Al10 alloy. The Nd60Fe20Al10Y10 and Nd60Fe30Al10 alloy exhibit the largest GFA and can be cast into bulk amorphous cylindrical specimens of 3 mm in diameter. The melting temperature or/and the reduced crystallization temperature is closely related to the GFA of Y-containing alloys. The bulk amorphous cylinder for the Nd55Fe20Al10Y15 alloy shows a distinct glass transition temperature and a wide supercooled liquid region before crystallization. The crystallization temperature, Tg, and the supercooled liquid region, TX, are 776 K and 58 K, respectively. The GFA and thermal stability of the Nd-Fe-AI-Y alloys were discussed.