A simple calcination method was employed to prepare a Z-scheme N-doped K4Nb6O17/g-C3N4(KCN)heterojunction photocatalyst,in which the electronic structure of K4Nb6O17 was regulated by N-doping,and g-C3N4 was formed bot...A simple calcination method was employed to prepare a Z-scheme N-doped K4Nb6O17/g-C3N4(KCN)heterojunction photocatalyst,in which the electronic structure of K4Nb6O17 was regulated by N-doping,and g-C3N4 was formed both on the surface and within the interlayer spaces of K4Nb6O17.The KCN composite showed profoundly improved photocatalytic activity for both H2 generation and RhB degradation compared to its counterparts.This improved performance was attributed to the synergistic effects of N-doping,which broadened its light harvesting ability,and heterojunction formation,which increased the charge separation rate.The relatively low BET specific surface area of the KCN composite had little effect on its photocatalytic activity.Based on ESR spectroscopy studies,•O2^−,•OH,and h^+are the main active species in the photocatalytic degradation of RhB.Thus,it is reasonable to propose a Z-scheme photocatalytic mechanism over the KCN composite,which exhibits the dual advantages of efficient charge separation and high redox ability.Our work provides a simple approach for constructing large-scale Z-scheme heterojunction photocatalysts with high photocatalytic performance.展开更多
An octahedral Nb6 structural unit with space aromaticity is identified for the first time in a transition–metal monoxide crystal Nb3O3 by ab initio calculations.The strong Nb–Nb metallic bonding facilitates the form...An octahedral Nb6 structural unit with space aromaticity is identified for the first time in a transition–metal monoxide crystal Nb3O3 by ab initio calculations.The strong Nb–Nb metallic bonding facilitates the formation of stable octahedral Nb6 structural units and the release of delocalization energy.Moreover,the Nb atoms in continuously connected Nb6 structural units share their electrons with each other in a continuous space of framework,so that the electrons are uniformly distributed.The newly discovered aromaticity in the octahedral Nb6 structural units extends the range of aromatic compounds and broadens our vision in structural chemistry.展开更多
Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pa...Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pan.To resolve this issue,in the present,a step-wise graded porous Ti-6Al-7Nb scaffold was additively manufactured on optimally surface mechanical attrition treated(SMATed)Ti-6Al-7Nb(specifically de-noted as S-Ti6Al7Nb)using laser powder bed fusion(PBF)technology.The microstructure,bond strength,residual stress distribution,and corrosion fatigue behavior of porous scaffolds modified S-Ti6Al7Nb were investigated and compared with those of mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb),S-Ti6Al7Nb,and porous scaffolds modified P-Ti6Al7Nb.Results showed that corrosion fatigue of porous scaffolds modi-fied Ti-6Al-7Nb was propagation controlled.Moreover,the crack propagation behavior in the PBF scaf-fold’s fusion zone(FZ)and heat-affected zone(HAZ),exhibiting insensitivity to the microstructural con-figurations characterized by columnar prior-βgrain(PBG)boundaries and acicularα''martensites,cou-pled with the PBF-induced residual tensile stresses in these regions,resulted in a considerable decrease inσ_(cf) for porous scaffolds modified P-Ti6Al7Nb compared to P-Ti6Al7Nb.In contrast,step-wise graded porous scaffold-modified S-Ti6Al7Nb demonstrated an improvedσ_(cf) which was even higher than that of P-Ti6Al7Nb.Such an advancement in corrosion fatigue strength is primarily attributed to the presence of residual compressive stresses within the underlying S-Ti6Al7Nb substrate,extending beyond FZ and HAZ.These stresses increased the crack propagation threshold,leading to crack deflection/branching and increased crack-path tortuosity,thereby synergistically markedly enhancing the crack propagation resis-tance of porous scaffolds modified S-Ti6Al7Nb.展开更多
文摘A simple calcination method was employed to prepare a Z-scheme N-doped K4Nb6O17/g-C3N4(KCN)heterojunction photocatalyst,in which the electronic structure of K4Nb6O17 was regulated by N-doping,and g-C3N4 was formed both on the surface and within the interlayer spaces of K4Nb6O17.The KCN composite showed profoundly improved photocatalytic activity for both H2 generation and RhB degradation compared to its counterparts.This improved performance was attributed to the synergistic effects of N-doping,which broadened its light harvesting ability,and heterojunction formation,which increased the charge separation rate.The relatively low BET specific surface area of the KCN composite had little effect on its photocatalytic activity.Based on ESR spectroscopy studies,•O2^−,•OH,and h^+are the main active species in the photocatalytic degradation of RhB.Thus,it is reasonable to propose a Z-scheme photocatalytic mechanism over the KCN composite,which exhibits the dual advantages of efficient charge separation and high redox ability.Our work provides a simple approach for constructing large-scale Z-scheme heterojunction photocatalysts with high photocatalytic performance.
基金financially supported by National Key R&D Program of China(2016YFB0700600)Soft Science Research Project of Guangdong Province(2017B030301013)Shenzhen Science and Technology Research Grant(ZDSYS201707281026184).
文摘An octahedral Nb6 structural unit with space aromaticity is identified for the first time in a transition–metal monoxide crystal Nb3O3 by ab initio calculations.The strong Nb–Nb metallic bonding facilitates the formation of stable octahedral Nb6 structural units and the release of delocalization energy.Moreover,the Nb atoms in continuously connected Nb6 structural units share their electrons with each other in a continuous space of framework,so that the electrons are uniformly distributed.The newly discovered aromaticity in the octahedral Nb6 structural units extends the range of aromatic compounds and broadens our vision in structural chemistry.
基金the National Key Research and Development Program of China(Grant No.2023YFC2412600)the National Natural Science Foundation of China(Grant No.51971171)for financially supporting this work.
文摘Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pan.To resolve this issue,in the present,a step-wise graded porous Ti-6Al-7Nb scaffold was additively manufactured on optimally surface mechanical attrition treated(SMATed)Ti-6Al-7Nb(specifically de-noted as S-Ti6Al7Nb)using laser powder bed fusion(PBF)technology.The microstructure,bond strength,residual stress distribution,and corrosion fatigue behavior of porous scaffolds modified S-Ti6Al7Nb were investigated and compared with those of mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb),S-Ti6Al7Nb,and porous scaffolds modified P-Ti6Al7Nb.Results showed that corrosion fatigue of porous scaffolds modi-fied Ti-6Al-7Nb was propagation controlled.Moreover,the crack propagation behavior in the PBF scaf-fold’s fusion zone(FZ)and heat-affected zone(HAZ),exhibiting insensitivity to the microstructural con-figurations characterized by columnar prior-βgrain(PBG)boundaries and acicularα''martensites,cou-pled with the PBF-induced residual tensile stresses in these regions,resulted in a considerable decrease inσ_(cf) for porous scaffolds modified P-Ti6Al7Nb compared to P-Ti6Al7Nb.In contrast,step-wise graded porous scaffold-modified S-Ti6Al7Nb demonstrated an improvedσ_(cf) which was even higher than that of P-Ti6Al7Nb.Such an advancement in corrosion fatigue strength is primarily attributed to the presence of residual compressive stresses within the underlying S-Ti6Al7Nb substrate,extending beyond FZ and HAZ.These stresses increased the crack propagation threshold,leading to crack deflection/branching and increased crack-path tortuosity,thereby synergistically markedly enhancing the crack propagation resis-tance of porous scaffolds modified S-Ti6Al7Nb.