In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ...In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.展开更多
Based on two-grid discretizations, in this paper, some new local and parallel finite element algorithms are proposed and analyzed for the stationary incompressible Navier- Stokes problem. These algorithms are motivate...Based on two-grid discretizations, in this paper, some new local and parallel finite element algorithms are proposed and analyzed for the stationary incompressible Navier- Stokes problem. These algorithms are motivated by the observation that for a solution to the Navier-Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One major technical tool for the analysis is some local a priori error estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids.展开更多
In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale fin...In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale finite element method for the time dependent Navier- Stokes problem. The theoretical analysis shows that the proposed method has a good convergence property. To show the efficiency of the proposed finite element method, we first present some numerical results for analytical solution problems. We then give some numerical results for the lid-driven cavity flow with Re = 5000, 7500 and 10000. We present the numerical results as the time are sufficient long, so that the steady state numerical solutions can be obtained.展开更多
Presents information on a study which dealt with Crouzeix-Raviart nonconforming finite element approximation (FEA) of Navier-Stokes equation in a plane bounded domain by using velocity-pressure mixed formulation. Nota...Presents information on a study which dealt with Crouzeix-Raviart nonconforming finite element approximation (FEA) of Navier-Stokes equation in a plane bounded domain by using velocity-pressure mixed formulation. Notations of Navier-Stokes problem and its nonconforming FEA; Description of linear nonconforming finite element spaces and their properties; Maximum-error estimates for C-R nonconforming FEA of stationary Navier-Stoke problem.展开更多
This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local ...This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.展开更多
In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case...In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.展开更多
In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. ...In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.展开更多
In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in s...In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.展开更多
This paper presents a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth so...This paper presents a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth solutions can be extended for all times, thus regularity. This happily is proved not only for the Navier-Stokes equations but also for the inviscid case of the Euler equations both for the periodic or non-periodic formulation and without external forcing (homogeneous case). The proof is based on an appropriate modified extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes theorem of invariance of the circulation of velocity in the Euler inviscid flows. This is essentially a 1D line density of (rotatory) momentum conservation. We discover a similar 2D surface density of (rotatory) momentum conservation. These conservations are indispensable, besides to the ordinary momentum conservation, to prove that there cannot be a blow-up in finite time, of the point vorticities, thus regularity.展开更多
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity ...In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states.展开更多
A necessary and sufficient conditions of the existence of formal solution to the initial value problem of Navier-Stokes equation an R-3 x R are presented. A computation case is also given.
文摘In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.
基金The first author was partially subsidized by the NSF of China 10371095. The third author was partially supported by the National Science Foundation of China under the grant 10425105 and the National Basic Research Program under the grant 2005CB321704.
文摘Based on two-grid discretizations, in this paper, some new local and parallel finite element algorithms are proposed and analyzed for the stationary incompressible Navier- Stokes problem. These algorithms are motivated by the observation that for a solution to the Navier-Stokes problem, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. One major technical tool for the analysis is some local a priori error estimates that are also obtained in this paper for the finite element solutions on general shape-regular grids.
文摘In this paper, by combining the second order characteristics time discretization with the variational multiscale finite element method in space we get a second order modified characteristics variational multiscale finite element method for the time dependent Navier- Stokes problem. The theoretical analysis shows that the proposed method has a good convergence property. To show the efficiency of the proposed finite element method, we first present some numerical results for analytical solution problems. We then give some numerical results for the lid-driven cavity flow with Re = 5000, 7500 and 10000. We present the numerical results as the time are sufficient long, so that the steady state numerical solutions can be obtained.
文摘Presents information on a study which dealt with Crouzeix-Raviart nonconforming finite element approximation (FEA) of Navier-Stokes equation in a plane bounded domain by using velocity-pressure mixed formulation. Notations of Navier-Stokes problem and its nonconforming FEA; Description of linear nonconforming finite element spaces and their properties; Maximum-error estimates for C-R nonconforming FEA of stationary Navier-Stoke problem.
基金partially supported by the NSFC(10871134)the AHRDIHL Project of Beijing Municipality (PHR201006107)
文摘This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.
基金supported by NNSFC(11101145),supported by NNSFC(11326140 and11501323)China Postdoctoral Science Foundation(2012M520360)+1 种基金Doctoral Foundation of North China University of Water Sources and Electric Power(201032),Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Doctoral Starting up Foundation of Quzhou University(BSYJ201314 and XNZQN201313)
文摘In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.
基金supported by the National Natural Science Foundation of China(11331005,11471134)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13066)the Scientific Research Funds of Huaqiao University(15BS201,15BS309)
文摘In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.
文摘In this paper, we consider the global existence of classical solution to the 3-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient λ(ρ)provided that the initial energy is small in some sense. In our result, we give a relation between the initial energy and the viscosity coefficient μ, and it shows that the initial energy can be large if the coefficient of the viscosity μ is taken to be large, which implies that large viscosity μ means large solution.
文摘This paper presents a very short solution to the 4th Millennium problem about the Navier-Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in time smooth solutions can be extended for all times, thus regularity. This happily is proved not only for the Navier-Stokes equations but also for the inviscid case of the Euler equations both for the periodic or non-periodic formulation and without external forcing (homogeneous case). The proof is based on an appropriate modified extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes theorem of invariance of the circulation of velocity in the Euler inviscid flows. This is essentially a 1D line density of (rotatory) momentum conservation. We discover a similar 2D surface density of (rotatory) momentum conservation. These conservations are indispensable, besides to the ordinary momentum conservation, to prove that there cannot be a blow-up in finite time, of the point vorticities, thus regularity.
基金supported by China Postdoctoral Science Foundation(2012M520205)supported by National Natural SciencesFoundation of China(11171229,11231006)Project of Beijing Chang Cheng Xue Zhe
文摘In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity μ is a positive constant and the bulk viscosity λ(ρ) = ρ^β with β≥0. Note that the initial data can be arbitrarily large to contain vacuum states.
文摘A necessary and sufficient conditions of the existence of formal solution to the initial value problem of Navier-Stokes equation an R-3 x R are presented. A computation case is also given.