The article studies the homogenization of a stationary Navier-Stokes fluid in porous medium with thin film under Dirichlet boundary condition.At the end of the article,"Darcy's law"is rigorously derived from this m...The article studies the homogenization of a stationary Navier-Stokes fluid in porous medium with thin film under Dirichlet boundary condition.At the end of the article,"Darcy's law"is rigorously derived from this model as the parameter ε tends to zero,which is independent of the coordinates towards the thickness.展开更多
In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relat...In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.展开更多
We study the time-decay properties of weighted norms of solutions to the Stokes equations and the Navier-Stokes equations in the half-space Rn+ (n 2). Three kinds of the weighted Lp-Lr estimates are established for th...We study the time-decay properties of weighted norms of solutions to the Stokes equations and the Navier-Stokes equations in the half-space Rn+ (n 2). Three kinds of the weighted Lp-Lr estimates are established for the Stokes semigroup generated by the Stokes operator in the half-space R+n (n 2). As an application of the weighted estimates of the Stokes semigroup, a class of local and global strong solutions in weighted Lp (R+n) are constructed, following the approach given by Kato.展开更多
The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA00...The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.展开更多
A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around...A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code,a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes(RANS) equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of holecells and donor elements searching of the moving-embedded grid technology, the ‘‘disturbance diffraction method" and ‘‘minimum distance scheme of donor elements method" are established in this work. To improve the computational efficiency, Message Passing Interface(MPI) parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage(FAS) multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately.展开更多
In this paper, the nonreflecting boundary conditions based upon fundamental ideas of the linear analysis are developed for gas dynamic equations, and the modified boundary conditions for Navier-Stokes equations are pr...In this paper, the nonreflecting boundary conditions based upon fundamental ideas of the linear analysis are developed for gas dynamic equations, and the modified boundary conditions for Navier-Stokes equations are proposed as a substitute of the nonreflecting boundary conditions inside boundary layers near rigid walls. These derived boundary conditions are then applied to calculations both for the Euler equations and the Navier-Stokes equations to determine if they can produce acceptable results for the subsonic flows in channels. The numerical results obtained by an implicit second-order upwind difference scheme show the effective- ness and generality of the boundary conditions. Furthermore, the formulae and the analysis performed here may be extended to three dimensional problems.展开更多
A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance an...A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated.展开更多
In order to account for the effect of particle existence on gas-particle turbulence flow in large-eddy simulation (LES),a new gas-particle turbulent kinetic energy subgrid-scale (SGS) turbulence model is established,a...In order to account for the effect of particle existence on gas-particle turbulence flow in large-eddy simulation (LES),a new gas-particle turbulent kinetic energy subgrid-scale (SGS) turbulence model is established,and the effect of particle wake is also considered in gas turbulent kinetic energy SGS turbulence model.Simulation of gas-particle turbulence flow in backward-facing step is carried out by LES using present model and by unified second-order moment (USM) model.The prediction statistical results including mean velocity and fluctuation velocity by LES using present model are in reasonable agreement with the experimental results.It is shown that present model is with higher calculating accuracy than USM model,which indicates that the turbulent kinetic energy SGS turbulence model is suitable.展开更多
The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for...The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for ψ respectively. The upwind scheme is used for the convective terms. The moving boundary conditions are specially treated, and the effects of outlet conditions on the flow field are abo examined. Numerical results obtained show that the spoiler's oscillation induces forming, growing and shedding of the vortices. The shedding frequency of vortices is equal to that of the spoiler's oscillation. The forced unsteady separated flows under the present investigation depend mainly on the reduced frequency. At low reduced frequency, the vortices shed from the spoiler interact weakly with each other, and move downstream at an almost uniform speed of 038 V∞. At high reduced frequency, the interaction between the adjacent vortices strengthens. They close up to and rotate around each other, and eventually, merge into one vortex.展开更多
We consider the Cauchy problem for the three-dimensional pressureless Navier-Stokes/Navier-Stokes system,which consists of the pressureless Navier-Stokes equations for(n,w)coupled with the isentropic compressible Navi...We consider the Cauchy problem for the three-dimensional pressureless Navier-Stokes/Navier-Stokes system,which consists of the pressureless Navier-Stokes equations for(n,w)coupled with the isentropic compressible Navier-Stokes equations for(ρ,u)through a drag force term n(w−u).We prove the global existence of strong solutions to the coupled system when the initial data are small perturbations of the constant equilibrium state.However,due to the pressureless structure,one can only deal with the density n of the pressureless flow through the transport equation and it is crucial to obtain the exact time-decay rates for the corresponding velocity w of the pressureless flow.To this end,we make use of the spectral analysis,low-high frequency decomposition and time-weighted energy method to deduce the large time behavior of(w,ρ,u)and consequently establish the Lyapunov stability of the density n in Sobolev space.展开更多
The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of ...The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.展开更多
In this paper,we consider the Cauchy problem of the isentropic compressible Navier-Stokes equations with degenerate viscosity and vacuum inℝ,where the viscosity depends on the density in a super-linear power law(i.e.,...In this paper,we consider the Cauchy problem of the isentropic compressible Navier-Stokes equations with degenerate viscosity and vacuum inℝ,where the viscosity depends on the density in a super-linear power law(i.e.,μ(ρ)=ρ^(δ),δ>1).We first obtain the local existence of the regular solution,then show that the regular solution will blow up in finite time if initial data have an isolated mass group,no matter how small and smooth the initial data are.It is worth mentioning that based on the transport structure of some intrinsic variables,we obtain the L^(∞)bound of the density,which helps to remove the restrictionδ≤γin Li-Pan-Zhu[21]and Huang-Wang-Zhu[13].展开更多
本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间Xa,σ0(ℝ3)中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。In this paper, it is proved that the Navier-Stokes equation with c...本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间Xa,σ0(ℝ3)中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。In this paper, it is proved that the Navier-Stokes equation with critical damping terms has a unique local solution in the Lei-Lin-Gevrey space Xa,σ0(ℝ3). In this paper, the main conclusion is proved by using the fixed point theorem and the related properties of the solution of the heat equation.展开更多
基金National NaturalScience Foundation of China(10171113 and 10471156)Natural Science Foundation of Guangdong(4009793)
文摘The article studies the homogenization of a stationary Navier-Stokes fluid in porous medium with thin film under Dirichlet boundary condition.At the end of the article,"Darcy's law"is rigorously derived from this model as the parameter ε tends to zero,which is independent of the coordinates towards the thickness.
基金supported by the National Natural Science Foundation of China (Grant No.12072114)the National Key Research and Development Plan (Grant No.2020YFB1709401)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).
文摘In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.
基金supported in part by National Basic Research Program of China (Grant No. 2006CB805902)Knowledge Innovation Funds of Chinese Academy of Sciences(Grant No. KJCX3-SYW-S03)+1 种基金supported in part by Scientific Research Plan Projects of Shaanxi Education (Grant No. 09JK770)China Postdoctoral Science Foundation (Grant No. 20090461305)
文摘We study the time-decay properties of weighted norms of solutions to the Stokes equations and the Navier-Stokes equations in the half-space Rn+ (n 2). Three kinds of the weighted Lp-Lr estimates are established for the Stokes semigroup generated by the Stokes operator in the half-space R+n (n 2). As an application of the weighted estimates of the Stokes semigroup, a class of local and global strong solutions in weighted Lp (R+n) are constructed, following the approach given by Kato.
文摘The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.
基金co-supported by the National Natural Science Foundation of China (Nos. 11272150, 10872094 and 10602024)
文摘A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code,a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes(RANS) equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of holecells and donor elements searching of the moving-embedded grid technology, the ‘‘disturbance diffraction method" and ‘‘minimum distance scheme of donor elements method" are established in this work. To improve the computational efficiency, Message Passing Interface(MPI) parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage(FAS) multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately.
文摘In this paper, the nonreflecting boundary conditions based upon fundamental ideas of the linear analysis are developed for gas dynamic equations, and the modified boundary conditions for Navier-Stokes equations are proposed as a substitute of the nonreflecting boundary conditions inside boundary layers near rigid walls. These derived boundary conditions are then applied to calculations both for the Euler equations and the Navier-Stokes equations to determine if they can produce acceptable results for the subsonic flows in channels. The numerical results obtained by an implicit second-order upwind difference scheme show the effective- ness and generality of the boundary conditions. Furthermore, the formulae and the analysis performed here may be extended to three dimensional problems.
文摘A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated.
基金the National Natural Science Foundation of China (Nos.50736006 and 51066006)the Aero-Science Fund (No.2009ZB56004)the Jiangxi Provincial Natural Science Foundation (Nos.2009GZC0100 and 2008GZW0016)
文摘In order to account for the effect of particle existence on gas-particle turbulence flow in large-eddy simulation (LES),a new gas-particle turbulent kinetic energy subgrid-scale (SGS) turbulence model is established,and the effect of particle wake is also considered in gas turbulent kinetic energy SGS turbulence model.Simulation of gas-particle turbulence flow in backward-facing step is carried out by LES using present model and by unified second-order moment (USM) model.The prediction statistical results including mean velocity and fluctuation velocity by LES using present model are in reasonable agreement with the experimental results.It is shown that present model is with higher calculating accuracy than USM model,which indicates that the turbulent kinetic energy SGS turbulence model is suitable.
基金The project is supported by the National Nature Science Foundation of China(NNSFC)
文摘The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for ψ respectively. The upwind scheme is used for the convective terms. The moving boundary conditions are specially treated, and the effects of outlet conditions on the flow field are abo examined. Numerical results obtained show that the spoiler's oscillation induces forming, growing and shedding of the vortices. The shedding frequency of vortices is equal to that of the spoiler's oscillation. The forced unsteady separated flows under the present investigation depend mainly on the reduced frequency. At low reduced frequency, the vortices shed from the spoiler interact weakly with each other, and move downstream at an almost uniform speed of 038 V∞. At high reduced frequency, the interaction between the adjacent vortices strengthens. They close up to and rotate around each other, and eventually, merge into one vortex.
基金supported by the National Natural Science Foundation of China(11931010,12226326,12226327)the Key Research Project of Academy for Multidisciplinary Studies,Capital Normal Universitysupported by the Anhui Provincial Natural Science Foundation(2408085QA031).
文摘We consider the Cauchy problem for the three-dimensional pressureless Navier-Stokes/Navier-Stokes system,which consists of the pressureless Navier-Stokes equations for(n,w)coupled with the isentropic compressible Navier-Stokes equations for(ρ,u)through a drag force term n(w−u).We prove the global existence of strong solutions to the coupled system when the initial data are small perturbations of the constant equilibrium state.However,due to the pressureless structure,one can only deal with the density n of the pressureless flow through the transport equation and it is crucial to obtain the exact time-decay rates for the corresponding velocity w of the pressureless flow.To this end,we make use of the spectral analysis,low-high frequency decomposition and time-weighted energy method to deduce the large time behavior of(w,ρ,u)and consequently establish the Lyapunov stability of the density n in Sobolev space.
基金supported by the National Natural Science Foundation of China (51176003)
文摘The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.
基金supported by the National Natural Science Foundation of China(12371221,12161141004,11831011)the Fundamental Research Funds for the Central Universities and Shanghai Frontiers Science Center of Modern Analysis.
文摘In this paper,we consider the Cauchy problem of the isentropic compressible Navier-Stokes equations with degenerate viscosity and vacuum inℝ,where the viscosity depends on the density in a super-linear power law(i.e.,μ(ρ)=ρ^(δ),δ>1).We first obtain the local existence of the regular solution,then show that the regular solution will blow up in finite time if initial data have an isolated mass group,no matter how small and smooth the initial data are.It is worth mentioning that based on the transport structure of some intrinsic variables,we obtain the L^(∞)bound of the density,which helps to remove the restrictionδ≤γin Li-Pan-Zhu[21]and Huang-Wang-Zhu[13].
文摘本文证明带有临界型阻尼项的Navier-Stokes方程在Lei-Lin-Gevrey空间Xa,σ0(ℝ3)中存在唯一的局部解。文章利用不动点定理和热方程解的有关性质来证明这一主要结论。In this paper, it is proved that the Navier-Stokes equation with critical damping terms has a unique local solution in the Lei-Lin-Gevrey space Xa,σ0(ℝ3). In this paper, the main conclusion is proved by using the fixed point theorem and the related properties of the solution of the heat equation.