Background: In the contxt of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec(Canada). Using contemporary and long-term fire cy...Background: In the contxt of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec(Canada). Using contemporary and long-term fire cycles, each natural forst landscape is defined according to the variability of its structure and composition, and compared to the present-day landscape. This analysis was conducted to address the question of whether human activities have moved these ecosystems outside the range of natural landscape variability.Methods: The study encompassed a forested area of 175 000 km2 divided into 14 landscapes. Using a framework that integrates fire cycles, age structure and forest dynamics, we characterized the forest composition and age structures that resulted from three historical fire cycles(110,140, and 180 years) representative of the boreal forest of eastern Canada. The modeled natural landscapes were compared with present-day landscapes in regard to the proportion of old-growth forests(landscape level) and the proportion of late-successional forest stands(landscape level and potential vegetation type).Results: Four landscapes(39%) remain within their natural range of variability. In contrast, nine landscapes(54%)show a large gap between natural and present-day landscapes. These nine are located in the southern portion of the study area, and are mainly associated with Abies-Betula vegetation where human activities have contributed to a strong increase in the proportion of Populus tremuloides stands(early-successional stages) and a decrease of oldgrowth forest stands(more than 100 years old). A single landscape(7%), substantially changed from its potential natural state, is a candidate for adaptive-based management.Conclusion: Comparison of corresponding natural(reference conditions) and present-day landscapes showed that ten landscapes reflecting an important shift in forest composition and age structure could be considered beyond the range of their natural variability. The description of a landscape's natural variability at the scale of several millennia can be considered a moving benchmark that can be re-evaluated in the context of climate change.Focusing on regional landscape characteristics and long-term natural variability of vegetation and forest age structure represents a step forward in methodology for defining reference conditions and following shifts in landscape over time.展开更多
Global warming accelerated after the late1970 s and slowed down after the late 1990 s, accompanying the significant interdecadal changes in the regional climate.We hypothesized that the interdecadal changes linearly c...Global warming accelerated after the late1970 s and slowed down after the late 1990 s, accompanying the significant interdecadal changes in the regional climate.We hypothesized that the interdecadal changes linearly consisted of two independent components, anthropogenic forcing and natural decadal variability, which can be represented simply by the radiative forcing effect of carbon dioxide (RFCO_2) and the Pacific Decadal Oscillation(PDO), respectively. The combined effect of the RFCO_2 and PDO could explain the majority of the surface temperature changes during the late 1970 s and 1990 s, but the magnitudes of the relative contribution of the RFCO_2 and the PDO are inconsistent in different regions. For both the surface temperature and geopotential height, the RFCO_2 could induce significantly positive anomalies over almost the entire globe for these two shifts, exhibiting a larger magnitude in the mid–high latitudes and in the late 1990 s shift.The PDO could induce opposite anomalies for the two interdecadal shifts due to its phase transitions(negativepositive–negative). Furthermore, for the shift in the late 1970s, both the RFCO2(53.7 %–66.7 %) and the PDO(33.3 %–46.3 %) were important in regulating the tropical geopotential height, whereas the RFCO_2 dominated the changes in the mid-latitudes. For the western Pacific subtropical high, the RFCO2(PDO) could explain 52.3 %–62.1 %(37.9 %–47.7 %) of the change. The negative effect of the PDO counteracted most of the RFCO_2 effects for the late 1990 s shift.展开更多
The eastern-and central-Pacific El Ni(n)o-Southem Oscillation (EP-and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean,and are characterized by interannual and decadal oscillation,respectively...The eastern-and central-Pacific El Ni(n)o-Southem Oscillation (EP-and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean,and are characterized by interannual and decadal oscillation,respectively.In the present study,we defined the EP-and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields.We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5).The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode,but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes.Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP-and CP-ENSO,respectively.Since there are no changes in external forcing in the pre-industrial control runs,such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.展开更多
Extreme disturbance activity is a signature of anthropogenic environmental change. Empirical information describing the historical normative limits of disturbance regimes provides baseline data that facilitates the de...Extreme disturbance activity is a signature of anthropogenic environmental change. Empirical information describing the historical normative limits of disturbance regimes provides baseline data that facilitates the detection of contemporary trends in both disturbances and community-level responses. Quantifying the attributes of historical disturbances is challenging due to their transient episodic nature, with decades-to centurieslong intervals between recurrences. Unmanaged primary forests that support centuries-old trees therefore serve as unique reference systems for quantifying past disturbance regimes. We surveyed relict stands of primary beech-dominated forests over wide environmental gradients in the Carpathian Mountains of Europe. We collected core samples from 3,026 trees in 208 field survey plots distributed across 13 forest stands in two countries. We used dendrochronological methods to analyze time-series of annually-resolved ring-width variation and to identify anomalous growth patterns diagnostic of past forest canopy removal. A 180-year record(1810–1990) of spatially and temporally explicit disturbance events(n =333) was compiled and used to derive s tatistical attributes of the disturbance regime. We quantified disturbance severity(canopy area lost), patch size, and return intervals. Our analyses describe a complex regime where a background of relatively frequent, smallscale, low-to intermediate-severity disturbance was punctuated by episodic large-scale high-severity events. Even the most severe events were non-catastrophic at a stand level, leaving significant residual tree cover that supported a continuity of ecological function. We did not detect evidence for an expected climate-induced intensification of disturbance with time, but methodological limitations precluded an assessment of disturbance activity in the decades since 1990.展开更多
Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this pa...Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.展开更多
This paper focuses on the presence of nodules of insoluble materials within salt specimens,and their effect on the volumetric strain measurements and the dilatancy phenomenon.We analyzed experimental results of over 1...This paper focuses on the presence of nodules of insoluble materials within salt specimens,and their effect on the volumetric strain measurements and the dilatancy phenomenon.We analyzed experimental results of over 120 conventional triaxial compression tests,and found that in 20%of the cases,the volumetric strain measurements were atypical.We also noted that the natural variability of the specimens can lead to a non-negligible data scattering in the volumetric strain measurements when different specimens are subjected to the same test.This is expected given the small magnitude of those strains,but it occasionally implies that the corresponding specimens are not representative of the volumetric behavior of the studied rock.In order to understand these results,we numerically investigated salt specimens modeled as halite matrices with inclusions of impurities.Simulations of triaxial compression tests on these structures proved that such heterogeneities can induce dilatancy,and their presence can lead to the appearance of tensile zones which is physically translated into a micro-cracking activity.The modeling approach is validated as the patterns displayed in the numerical results are identical to that in the laboratory.It was then employed to explain the observed irregularities in experimental results.We studied the natural variability effect as well and proposed a methodology to overcome the issue of specimen representativity from both deviatoric and volumetric perspectives.展开更多
The year 2021 was recorded as the 6th warmest since 1880.In addition to large-scale warming,2021 will be remembered for its unprecedented climate extremes.Here,a review of selected high-impact climate extremes in 2021...The year 2021 was recorded as the 6th warmest since 1880.In addition to large-scale warming,2021 will be remembered for its unprecedented climate extremes.Here,a review of selected high-impact climate extremes in 2021,with a focus on China,along with an extension to extreme events in North America and Europe is presented.Nine extreme events that occurred in 2021 in China are highlighted,including a rapid transition from cold to warm extremes and sandstorms in spring,consecutive drought in South China and severe thunderstorms in eastern China in the first half of the year,extremely heavy rainfall over Henan Province and Hubei Province during summer,as well as heatwaves,persistent heavy rainfall,and a cold surge during fall.Potential links of extremes in China to four global-scale climate extremes and the underlying physical mechanisms are discussed here,providing insights to understand climate extremes from a global perspective.This serves as a reference for climate event attribution,process understanding,and high-resolution modeling of extreme events.展开更多
Evaluating cloud seeding effects is one of the most critical issues in artificial precipitation enhancement experiments. However, the evaluation is not straightforward because there is natural rainfall variability, wh...Evaluating cloud seeding effects is one of the most critical issues in artificial precipitation enhancement experiments. However, the evaluation is not straightforward because there is natural rainfall variability, which subjects the atmosphere to spatiotemporal instabilities. The aim of this study is to analyze natural rainfall variability using the modern statistical simulation method, "bootstrap", to analyze its influence on the evaluation of seeding activities and to take proper measures to control the influence. The study is based on the 1997?2007 airborne seeding macro records and the daily precipitation data in Jilin Province. The influence of natural rainfall variability can be reduced through three approaches: the increase of the supposed "seeded" sample size N, the rejection of outliers, and the selection of similar control units. A larger N leads to smaller calculated precipitation variability and detectable lower limits of seeding effects. When N is near 470 and the seeding effect is between 20% and 30%, the confidence level reaches 90%. For a single seeding operation, the case deletion model that rejects strong influence points and selects similar control units is established to control the influence of natural precipitation variability, which obviously improves the evaluation of artificial precipitation enhancement. The results demonstrate that the relative seeding effect in Jilin Province is concentrated mainly in the range of 0 to 30%, with an average of 11.95%, and has no significant linear relationship with the actual precipitation amount. However, the fluctuation amplitude of the relative effect decreases as the precipitation amount rises.展开更多
The unexpected global warming slowdown during 1998–2013 challenges the existing scientific understanding of global temperature change mechanisms,and thus the simulation and prediction ability of state-of-the-art clim...The unexpected global warming slowdown during 1998–2013 challenges the existing scientific understanding of global temperature change mechanisms,and thus the simulation and prediction ability of state-of-the-art climate models since most models participating in phase 5 of the Coupled Model Intercomparison Project(CMIP5)cannot simulate it.Here,we examine whether the new-generation climate models in CMIP6 can reproduce the recent global warming slowdown,and further evaluate their capacities for simulating key-scale natural variabilities which are the most likely causes of the slowdown.The results show that although the CMIP6 models present some encouraging improvements when compared with CMIP5,most of them still fail to reproduce the warming slowdown.They considerably overestimate the warming rate observed in 1998–2013,exhibiting an obvious warming acceleration rather than the observed deceleration.This is probably associated with their deficiencies in simulating the distinct temperature change signals from the human-induced long-term warming trend and/or the three crucial natural variabilities at interannual,interdecadal,and multidecadal scales.In contrast,the 4 models that can successfully reproduce the slowdown show relatively high skills in simulating the long-term warming trend and the three keyscale natural variabilities.Our work may provide important insight for the simulation and prediction of near-term climate changes.展开更多
基金funded by the Ministère des Forêts,de la Faune et des Parcs du Québec(MFFP).The funds were used mainly for the salary of the authors working for the MFFP
文摘Background: In the contxt of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec(Canada). Using contemporary and long-term fire cycles, each natural forst landscape is defined according to the variability of its structure and composition, and compared to the present-day landscape. This analysis was conducted to address the question of whether human activities have moved these ecosystems outside the range of natural landscape variability.Methods: The study encompassed a forested area of 175 000 km2 divided into 14 landscapes. Using a framework that integrates fire cycles, age structure and forest dynamics, we characterized the forest composition and age structures that resulted from three historical fire cycles(110,140, and 180 years) representative of the boreal forest of eastern Canada. The modeled natural landscapes were compared with present-day landscapes in regard to the proportion of old-growth forests(landscape level) and the proportion of late-successional forest stands(landscape level and potential vegetation type).Results: Four landscapes(39%) remain within their natural range of variability. In contrast, nine landscapes(54%)show a large gap between natural and present-day landscapes. These nine are located in the southern portion of the study area, and are mainly associated with Abies-Betula vegetation where human activities have contributed to a strong increase in the proportion of Populus tremuloides stands(early-successional stages) and a decrease of oldgrowth forest stands(more than 100 years old). A single landscape(7%), substantially changed from its potential natural state, is a candidate for adaptive-based management.Conclusion: Comparison of corresponding natural(reference conditions) and present-day landscapes showed that ten landscapes reflecting an important shift in forest composition and age structure could be considered beyond the range of their natural variability. The description of a landscape's natural variability at the scale of several millennia can be considered a moving benchmark that can be re-evaluated in the context of climate change.Focusing on regional landscape characteristics and long-term natural variability of vegetation and forest age structure represents a step forward in methodology for defining reference conditions and following shifts in landscape over time.
基金supported by the National Natural Science Foundation of China(4120505441205051)+1 种基金the Strategic Technological Program of the Chinese Academy of Sciences(XDA05090405)he Special Fund for the Public Welfare Industry(201006022)
文摘Global warming accelerated after the late1970 s and slowed down after the late 1990 s, accompanying the significant interdecadal changes in the regional climate.We hypothesized that the interdecadal changes linearly consisted of two independent components, anthropogenic forcing and natural decadal variability, which can be represented simply by the radiative forcing effect of carbon dioxide (RFCO_2) and the Pacific Decadal Oscillation(PDO), respectively. The combined effect of the RFCO_2 and PDO could explain the majority of the surface temperature changes during the late 1970 s and 1990 s, but the magnitudes of the relative contribution of the RFCO_2 and the PDO are inconsistent in different regions. For both the surface temperature and geopotential height, the RFCO_2 could induce significantly positive anomalies over almost the entire globe for these two shifts, exhibiting a larger magnitude in the mid–high latitudes and in the late 1990 s shift.The PDO could induce opposite anomalies for the two interdecadal shifts due to its phase transitions(negativepositive–negative). Furthermore, for the shift in the late 1970s, both the RFCO2(53.7 %–66.7 %) and the PDO(33.3 %–46.3 %) were important in regulating the tropical geopotential height, whereas the RFCO_2 dominated the changes in the mid-latitudes. For the western Pacific subtropical high, the RFCO2(PDO) could explain 52.3 %–62.1 %(37.9 %–47.7 %) of the change. The negative effect of the PDO counteracted most of the RFCO_2 effects for the late 1990 s shift.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41221064, 41376020, 41376025, and 90711003)the key program of 2012Z001 and 2013Z002 in the Chinese Academy of Meteorological Science+1 种基金the "Strategic Priority Research Program–Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05090400)supported by the Jiangsu Collaborative Innovation Center for Climate Change
文摘The eastern-and central-Pacific El Ni(n)o-Southem Oscillation (EP-and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean,and are characterized by interannual and decadal oscillation,respectively.In the present study,we defined the EP-and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields.We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5).The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode,but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes.Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP-and CP-ENSO,respectively.Since there are no changes in external forcing in the pre-industrial control runs,such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.
基金supported by the Czech Science Foundation project GACR21-27454STechnology Agency of the Czech Republic(project Center for Landscape and Biodiversity,SS02030018).
文摘Extreme disturbance activity is a signature of anthropogenic environmental change. Empirical information describing the historical normative limits of disturbance regimes provides baseline data that facilitates the detection of contemporary trends in both disturbances and community-level responses. Quantifying the attributes of historical disturbances is challenging due to their transient episodic nature, with decades-to centurieslong intervals between recurrences. Unmanaged primary forests that support centuries-old trees therefore serve as unique reference systems for quantifying past disturbance regimes. We surveyed relict stands of primary beech-dominated forests over wide environmental gradients in the Carpathian Mountains of Europe. We collected core samples from 3,026 trees in 208 field survey plots distributed across 13 forest stands in two countries. We used dendrochronological methods to analyze time-series of annually-resolved ring-width variation and to identify anomalous growth patterns diagnostic of past forest canopy removal. A 180-year record(1810–1990) of spatially and temporally explicit disturbance events(n =333) was compiled and used to derive s tatistical attributes of the disturbance regime. We quantified disturbance severity(canopy area lost), patch size, and return intervals. Our analyses describe a complex regime where a background of relatively frequent, smallscale, low-to intermediate-severity disturbance was punctuated by episodic large-scale high-severity events. Even the most severe events were non-catastrophic at a stand level, leaving significant residual tree cover that supported a continuity of ecological function. We did not detect evidence for an expected climate-induced intensification of disturbance with time, but methodological limitations precluded an assessment of disturbance activity in the decades since 1990.
基金The authors would like to thank the Natural Sciences and Engineering Research Council of Canada(NSERC),IAMGOLD Corporation,and Westwood mine for supporting and funding this research(Grant No.RDCPJ 520428e17)also NSERC discovery funding(Grant No.RGPIN-2019-06693).
文摘Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.
文摘This paper focuses on the presence of nodules of insoluble materials within salt specimens,and their effect on the volumetric strain measurements and the dilatancy phenomenon.We analyzed experimental results of over 120 conventional triaxial compression tests,and found that in 20%of the cases,the volumetric strain measurements were atypical.We also noted that the natural variability of the specimens can lead to a non-negligible data scattering in the volumetric strain measurements when different specimens are subjected to the same test.This is expected given the small magnitude of those strains,but it occasionally implies that the corresponding specimens are not representative of the volumetric behavior of the studied rock.In order to understand these results,we numerically investigated salt specimens modeled as halite matrices with inclusions of impurities.Simulations of triaxial compression tests on these structures proved that such heterogeneities can induce dilatancy,and their presence can lead to the appearance of tensile zones which is physically translated into a micro-cracking activity.The modeling approach is validated as the patterns displayed in the numerical results are identical to that in the laboratory.It was then employed to explain the observed irregularities in experimental results.We studied the natural variability effect as well and proposed a methodology to overcome the issue of specimen representativity from both deviatoric and volumetric perspectives.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)the K.C.WONG Education Foundation.This work also contributes to the U.K.-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
文摘The year 2021 was recorded as the 6th warmest since 1880.In addition to large-scale warming,2021 will be remembered for its unprecedented climate extremes.Here,a review of selected high-impact climate extremes in 2021,with a focus on China,along with an extension to extreme events in North America and Europe is presented.Nine extreme events that occurred in 2021 in China are highlighted,including a rapid transition from cold to warm extremes and sandstorms in spring,consecutive drought in South China and severe thunderstorms in eastern China in the first half of the year,extremely heavy rainfall over Henan Province and Hubei Province during summer,as well as heatwaves,persistent heavy rainfall,and a cold surge during fall.Potential links of extremes in China to four global-scale climate extremes and the underlying physical mechanisms are discussed here,providing insights to understand climate extremes from a global perspective.This serves as a reference for climate event attribution,process understanding,and high-resolution modeling of extreme events.
基金supported by the National Meteorological Public Benefit Research Foundation(Grant No.GYHY201006031)the China Meteorological Administration Soft Science Project(Grant No.2012-053)+1 种基金the Jiangsu Province Science Department Grant(Grant No.CB10X_295Z)the Jiangsu Province Qinglan Project for Cloud Fog Precipitation and Aerosol Research Group
文摘Evaluating cloud seeding effects is one of the most critical issues in artificial precipitation enhancement experiments. However, the evaluation is not straightforward because there is natural rainfall variability, which subjects the atmosphere to spatiotemporal instabilities. The aim of this study is to analyze natural rainfall variability using the modern statistical simulation method, "bootstrap", to analyze its influence on the evaluation of seeding activities and to take proper measures to control the influence. The study is based on the 1997?2007 airborne seeding macro records and the daily precipitation data in Jilin Province. The influence of natural rainfall variability can be reduced through three approaches: the increase of the supposed "seeded" sample size N, the rejection of outliers, and the selection of similar control units. A larger N leads to smaller calculated precipitation variability and detectable lower limits of seeding effects. When N is near 470 and the seeding effect is between 20% and 30%, the confidence level reaches 90%. For a single seeding operation, the case deletion model that rejects strong influence points and selects similar control units is established to control the influence of natural precipitation variability, which obviously improves the evaluation of artificial precipitation enhancement. The results demonstrate that the relative seeding effect in Jilin Province is concentrated mainly in the range of 0 to 30%, with an average of 11.95%, and has no significant linear relationship with the actual precipitation amount. However, the fluctuation amplitude of the relative effect decreases as the precipitation amount rises.
基金supported by the National Natural Science Foundation of China(Grant No.41806043)the Basic Scientific Fund for National Public Research Institutes of China(Grant No.2019Q08)+3 种基金the National Natural Science Foundation of China(Grant No.41821004)the Basic Scientific Fund for National Public Research Institute of China(Shu Xingbei Young Talent Program Grant No.2019S06)the National Program on Global Change and Air-Sea Interaction(Grant No.GASI-IPOVAI-06)the National Natural Science Foundation of China(Grant No.41906029)。
文摘The unexpected global warming slowdown during 1998–2013 challenges the existing scientific understanding of global temperature change mechanisms,and thus the simulation and prediction ability of state-of-the-art climate models since most models participating in phase 5 of the Coupled Model Intercomparison Project(CMIP5)cannot simulate it.Here,we examine whether the new-generation climate models in CMIP6 can reproduce the recent global warming slowdown,and further evaluate their capacities for simulating key-scale natural variabilities which are the most likely causes of the slowdown.The results show that although the CMIP6 models present some encouraging improvements when compared with CMIP5,most of them still fail to reproduce the warming slowdown.They considerably overestimate the warming rate observed in 1998–2013,exhibiting an obvious warming acceleration rather than the observed deceleration.This is probably associated with their deficiencies in simulating the distinct temperature change signals from the human-induced long-term warming trend and/or the three crucial natural variabilities at interannual,interdecadal,and multidecadal scales.In contrast,the 4 models that can successfully reproduce the slowdown show relatively high skills in simulating the long-term warming trend and the three keyscale natural variabilities.Our work may provide important insight for the simulation and prediction of near-term climate changes.