期刊文献+
共找到389篇文章
< 1 2 20 >
每页显示 20 50 100
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
1
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
Chinese DeepSeek: Performance of Various Oversampling Techniques on Public Perceptions Using Natural Language Processing
2
作者 Anees Ara Muhammad Mujahid +2 位作者 Amal Al-Rasheed Shaha Al-Otaibi Tanzila Saba 《Computers, Materials & Continua》 2025年第8期2717-2731,共15页
DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without... DeepSeek Chinese artificial intelligence(AI)open-source model,has gained a lot of attention due to its economical training and efficient inference.DeepSeek,a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step,demonstrates remarkable reasoning capabilities of performing a wide range of tasks.DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries.Users possess divergent viewpoints regarding advanced models like DeepSeek,posting both their merits and shortcomings across several social media platforms.This research presents a new framework for predicting public sentiment to evaluate perceptions of DeepSeek.To transform the unstructured data into a suitable manner,we initially collect DeepSeek-related tweets from Twitter and subsequently implement various preprocessing methods.Subsequently,we annotated the tweets utilizing the Valence Aware Dictionary and sentiment Reasoning(VADER)methodology and the lexicon-driven TextBlob.Next,we classified the attitudes obtained from the purified data utilizing the proposed hybrid model.The proposed hybrid model consists of long-term,shortterm memory(LSTM)and bidirectional gated recurrent units(BiGRU).To strengthen it,we include multi-head attention,regularizer activation,and dropout units to enhance performance.Topic modeling employing KMeans clustering and Latent Dirichlet Allocation(LDA),was utilized to analyze public behavior concerning DeepSeek.The perceptions demonstrate that 82.5%of the people are positive,15.2%negative,and 2.3%neutral using TextBlob,and 82.8%positive,16.1%negative,and 1.2%neutral using the VADER analysis.The slight difference in results ensures that both analyses concur with their overall perceptions and may have distinct views of language peculiarities.The results indicate that the proposed model surpassed previous state-of-the-art approaches. 展开更多
关键词 DeepSeek PREDICTION natural language processing deep learning analysis TextBlob imbalance data
在线阅读 下载PDF
Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services
3
作者 Sangmin Kim Byeongcheon Lee +2 位作者 Muazzam Maqsood Jihoon Moon Seungmin Rho 《Computer Modeling in Engineering & Sciences》 2025年第5期2079-2108,共30页
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a... The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes. 展开更多
关键词 Online grooming KcELECTRA natural language processing optical character recognition social networking service text classification
在线阅读 下载PDF
Natural Language Processing for Sentiment Analysis in Social Media Marketing
4
作者 Murat Başal 《Economics World》 2025年第1期39-51,共13页
Organizations often use sentiment analysis-based systems or even resort to simple manual analysis to try to extract useful meaning from their customers’general digital“chatter”.Driven by the need for a more accurat... Organizations often use sentiment analysis-based systems or even resort to simple manual analysis to try to extract useful meaning from their customers’general digital“chatter”.Driven by the need for a more accurate way to qualitatively extract valuable product and brand-oriented consumer-generated texts,this paper experimentally tests the ability of an NLP-based analytics approach to extract information from highly unstructured texts.The results show that natural language processing outperforms sentiment analysis for detecting issues from social media data.Surprisingly,the experiment shows that sentiment analysis is not only better than manual analysis of social media data for the goal of supporting organizational decision-making,but may also be disadvantageous for such efforts. 展开更多
关键词 social media marketing emotion analysis natural language
在线阅读 下载PDF
Unlocking the Potential:A Comprehensive Systematic Review of ChatGPT in Natural Language Processing Tasks
5
作者 Ebtesam Ahmad Alomari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期43-85,共43页
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in... As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues. 展开更多
关键词 Generative AI large languagemodel(LLM) natural language processing(NLP) ChatGPT GPT(generative pretraining transformer) GPT-4 sentiment analysis NER information extraction ANNOTATION text classification
在线阅读 下载PDF
Automatic Generation of Attribute-Based Access Control Policies from Natural Language Documents
6
作者 Fangfang Shan Zhenyu Wang +1 位作者 Mengyao Liu Menghan Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期3881-3902,共22页
In response to the challenges of generating Attribute-Based Access Control(ABAC)policies,this paper proposes a deep learning-based method to automatically generate ABAC policies from natural language documents.This me... In response to the challenges of generating Attribute-Based Access Control(ABAC)policies,this paper proposes a deep learning-based method to automatically generate ABAC policies from natural language documents.This method is aimed at organizations such as companies and schools that are transitioning from traditional access control models to the ABAC model.The manual retrieval and analysis involved in this transition are inefficient,prone to errors,and costly.Most organizations have high-level specifications defined for security policies that include a set of access control policies,which often exist in the form of natural language documents.Utilizing this rich source of information,our method effectively identifies and extracts the necessary attributes and rules for access control from natural language documents,thereby constructing and optimizing access control policies.This work transforms the problem of policy automation generation into two tasks:extraction of access control statements andmining of access control attributes.First,the Chat General Language Model(ChatGLM)isemployed to extract access control-related statements from a wide range of natural language documents by constructing unique prompts and leveraging the model’s In-Context Learning to contextualize the statements.Then,the Iterated Dilated-Convolutions-Conditional Random Field(ID-CNN-CRF)model is used to annotate access control attributes within these extracted statements,including subject attributes,object attributes,and action attributes,thus reassembling new access control policies.Experimental results show that our method,compared to baseline methods,achieved the highest F1 score of 0.961,confirming the model’s effectiveness and accuracy. 展开更多
关键词 Access control policy generation natural language deep learning
在线阅读 下载PDF
Literature classification and its applications in condensed matter physics and materials science by natural language processing
7
作者 吴思远 朱天念 +5 位作者 涂思佳 肖睿娟 袁洁 吴泉生 李泓 翁红明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期117-123,共7页
The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classificatio... The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions. 展开更多
关键词 natural language processing text mining materials science
原文传递
Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features
8
作者 Qazi Mazhar ul Haq Fahim Arif +4 位作者 Khursheed Aurangzeb Noor ul Ain Javed Ali Khan Saddaf Rubab Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2024年第3期4379-4397,共19页
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learn... Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learning to predict software bugs,but a more precise and general approach is needed.Accurate bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning methods.However,these studies are not generalized and efficient when extended to other datasets.Therefore,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems.The methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a model.Four National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were combined.It reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode. 展开更多
关键词 natural language processing software bug prediction transfer learning ensemble learning feature selection
在线阅读 下载PDF
Herding and investor sentiment after the cryptocurrency crash:evidence from Twitter and natural language processing
9
作者 Michael Cary 《Financial Innovation》 2024年第1期425-447,共23页
Although the 2022 cryptocurrency market crash prompted despair among investors,the rallying cry,“wagmi”(We’re all gonna make it.)emerged among cryptocurrency enthusiasts in the aftermath.Did cryptocurrency enthusia... Although the 2022 cryptocurrency market crash prompted despair among investors,the rallying cry,“wagmi”(We’re all gonna make it.)emerged among cryptocurrency enthusiasts in the aftermath.Did cryptocurrency enthusiasts respond to this crash differently compared to traditional investors?Using natural language processing techniques applied to Twitter data,this study employed a difference-in-differences method to determine whether the cryptocurrency market crash had a differential effect on investor sentiment toward cryptocurrency enthusiasts relative to more traditional investors.The results indicate that the crash affected investor sentiment among cryptocurrency enthusiastic investors differently from traditional investors.In particular,cryptocurrency enthusiasts’tweets became more neutral and,surprisingly,less negative.This result appears to be primarily driven by a deliberate,collectivist effort to promote positivity within the cryptocurrency community(“wagmi”).Considering the more nuanced emotional content of tweets,it appears that cryptocurrency enthusiasts expressed less joy and surprise in the aftermath of the cryptocurrency crash than traditional investors.Moreover,cryptocurrency enthusiasts tweeted more frequently after the cryptocurrency crash,with a relative increase in tweet frequency of approximately one tweet per day.An analysis of the specific textual content of tweets provides evidence of herding behavior among cryptocurrency enthusiasts. 展开更多
关键词 Bitcoin Cryptocurrency HERDING Investor sentiment natural language processing Sentiment analysis TWITTER
在线阅读 下载PDF
Key Technologies and Application Prospects of Railway Natural Language Large Model
10
作者 SHI Tianyun LI Xinqin +4 位作者 DAI Mingrui SHI Weifeng LI Guohua DU Wenran SHEN Meiying(Translated) 《Chinese Railways》 2024年第2期11-20,共10页
The emergence of artificial intelligence natural language large models has brought new dawn for the in-depth empowerment of the industry.Research on key technologies and applications of railway natural language large ... The emergence of artificial intelligence natural language large models has brought new dawn for the in-depth empowerment of the industry.Research on key technologies and applications of railway natural language large model is of great significance to promoting and coordinating the development of railway artificial intelligence.This paper puts forward the application scenarios of railway natural language large model according to the application requirements of railway artificial intelligence;designs the overall architecture of the railway natural language large model by relying on the railway artificial intelligence platform,studies the key technologies of the natural language large model,builds a railway industry large model oriented to intelligent question-answering,and verifies the model with actual data;finally,this paper prospects for the development and application of railway natural language large model from the aspects of railway traffic organization,railway operation safety and passenger service. 展开更多
关键词 intelligent HSR artificial intelligence railway natural language large model application scenarios large model architecture large model fine-tuning retrieval-augmented generation railway knowledge question-answering
原文传递
Application of Natural Language Processing in Virtual Experience AI Interaction Design
11
作者 Ziqian Rong 《Journal of Intelligent Learning Systems and Applications》 2024年第4期403-417,共15页
This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virt... This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences. 展开更多
关键词 natural Language Processing Virtual Reality Augmented Reality Interaction Design User Experience
在线阅读 下载PDF
Harnessing artificial intelligence for identifying conflicts of interest in research
12
作者 Abdulqadir J Nashwan 《World Journal of Methodology》 2025年第1期6-8,共3页
This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni... This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings. 展开更多
关键词 Artificial intelligence Conflicts of interest TRANSPARENCY Research integrity natural language processing
在线阅读 下载PDF
Enhancing Arabic Sentiment Analysis with Pre-Trained CAMeLBERT:A Case Study on Noisy Texts
13
作者 Fay Aljomah Lama Aldhafeeri +3 位作者 Maha Alfadel Sultanh Alshahrani Qaisar Abbas Sarah Alhumoud 《Computers, Materials & Continua》 2025年第9期5317-5335,共19页
Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its ... Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its wide range of dialect variations.Te availability of annotated datasets is limited,and preprocessing of the noisy content is even more challenging,sometimes resulting in the removal of important cues of sentiment from the input.To overcome such problems,this study investigates the applicability of using transfer learning based on pre-trained transformer models to classify sentiment in Arabic texts with high accuracy.Specifcally,it uses the CAMeLBERT model fnetuned for the Multi-Domain Arabic Resources for Sentiment Analysis(MARSA)dataset containing more than 56,000 manually annotated tweets annotated across political,social,sports,and technology domains.Te proposed method avoids extensive use of preprocessing and shows that raw data provides better results because they tend to retain more linguistic features.Te fne-tuned CAMeLBERT model produces state-of-the-art accuracy of 92%,precision of 91.7%,recall of 92.3%,and F1-score of 91.5%,outperforming standard machine learning models and ensemble-based/deep learning techniques.Our performance comparisons against other pre-trained models,namely AraBERTv02-twitter and MARBERT,show that transformer-based architectures are consistently the best suited when dealing with noisy Arabic texts.Tis work leads to a strong remedy for the problems in Arabic sentiment analysis and provides recommendations on easy tuning of the pre-trained models to adapt to challenging linguistic features and domain-specifc tasks. 展开更多
关键词 Artifcial intelligence deep learning machine learning BERT CAMeLBERT natural language processing sentiment analysis transformer
在线阅读 下载PDF
Large Language Model-Driven Knowledge Discovery for Designing Advanced Micro/Nano Electrocatalyst Materials
14
作者 Ying Shen Shichao Zhao +3 位作者 Yanfei Lv Fei Chen Li Fu Hassan Karimi-Maleh 《Computers, Materials & Continua》 2025年第8期1921-1950,共30页
This review presents a comprehensive and forward-looking analysis of how Large Language Models(LLMs)are transforming knowledge discovery in the rational design of advancedmicro/nano electrocatalyst materials.Electroca... This review presents a comprehensive and forward-looking analysis of how Large Language Models(LLMs)are transforming knowledge discovery in the rational design of advancedmicro/nano electrocatalyst materials.Electrocatalysis is central to sustainable energy and environmental technologies,but traditional catalyst discovery is often hindered by high complexity,fragmented knowledge,and inefficiencies.LLMs,particularly those based on Transformer architectures,offer unprecedented capabilities in extracting,synthesizing,and generating scientific knowledge from vast unstructured textual corpora.This work provides the first structured synthesis of how LLMs have been leveraged across various electrocatalysis tasks,including automated information extraction from literature,text-based property prediction,hypothesis generation,synthesis planning,and knowledge graph construction.We comparatively analyze leading LLMs and domain-specific frameworks(e.g.,CatBERTa,CataLM,CatGPT)in terms of methodology,application scope,performance metrics,and limitations.Through curated case studies across key electrocatalytic reactions—HER,OER,ORR,and CO_(2)RR—we highlight emerging trends such as the growing use of embedding-based prediction,retrieval-augmented generation,and fine-tuned scientific LLMs.The review also identifies persistent challenges,including data heterogeneity,hallucination risks,lack of standard benchmarks,and limited multimodal integration.Importantly,we articulate future research directions,such as the development of multimodal and physics-informedMatSci-LLMs,enhanced interpretability tools,and the integration of LLMswith selfdriving laboratories for autonomous discovery.By consolidating fragmented advances and outlining a unified research roadmap,this review provides valuable guidance for both materials scientists and AI practitioners seeking to accelerate catalyst innovation through large language model technologies. 展开更多
关键词 Large languagemodels ELECTROCATALYSIS NANOMATERIALS knowledge discovery materials design artificial intelligence natural language processing
在线阅读 下载PDF
Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts
15
作者 Lilia-Eliana Popescu-Apreutesei Mihai-Sorin Iosupescu +1 位作者 Sabina Cristiana Necula Vasile-Daniel Pavaloaia 《Computers, Materials & Continua》 2025年第8期2605-2644,共40页
The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situati... The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality. 展开更多
关键词 AI-GA dataset bidirectional LSTM GloVe embeddings AI-generated text detection academic integrity deep learning OVERFITTING natural language processing
在线阅读 下载PDF
A Convolutional Neural Network Based Optical Character Recognition for Purely Handwritten Characters and Digits
16
作者 Syed Atir Raza Muhammad Shoaib Farooq +3 位作者 Uzma Farooq Hanen Karamti Tahir Khurshaid Imran Ashraf 《Computers, Materials & Continua》 2025年第8期3149-3173,共25页
Urdu,a prominent subcontinental language,serves as a versatile means of communication.However,its handwritten expressions present challenges for optical character recognition(OCR).While various OCR techniques have bee... Urdu,a prominent subcontinental language,serves as a versatile means of communication.However,its handwritten expressions present challenges for optical character recognition(OCR).While various OCR techniques have been proposed,most of them focus on recognizing printed Urdu characters and digits.To the best of our knowledge,very little research has focused solely on Urdu pure handwriting recognition,and the results of such proposed methods are often inadequate.In this study,we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks(CNN).Our proposed method utilizes convolutional layers to extract important features from input images and classifies them using fully connected layers,enabling efficient and accurate detection of Urdu handwritten digits and characters.We implemented the proposed technique on a large publicly available dataset of Urdu handwritten digits and characters.The findings demonstrate that the CNN model achieves an accuracy of 98.30%and an F1 score of 88.6%,indicating its effectiveness in detecting and classifyingUrdu handwritten digits and characters.These results have far-reaching implications for various applications,including document analysis,text recognition,and language understanding,which have previously been unexplored in the context of Urdu handwriting data.This work lays a solid foundation for future research and development in Urdu language detection and processing,opening up new opportunities for advancement in this field. 展开更多
关键词 Image processing natural language processing handwritten Urdu characters optical character recognition deep learning feature extraction CLASSIFICATION
在线阅读 下载PDF
The Role of Village Regulations in Litigation Source Governance:A Legal and Empirical Analysis Based on Tianjin’s 2023 Model Village Regulations
17
作者 Siying Huo Yuefeng Wang +1 位作者 Ziyuan Xu Guo Yang 《Proceedings of Business and Economic Studies》 2025年第4期446-454,共9页
This study examines the role of village regulations within China’s Litigation Source Governance(LSG)framework,specifically analyzing Tianjin Municipality’s 2023 Model Village Regulations.Employing legal analysis and... This study examines the role of village regulations within China’s Litigation Source Governance(LSG)framework,specifically analyzing Tianjin Municipality’s 2023 Model Village Regulations.Employing legal analysis and Natural Language Processing(NLP)techniques,the research evaluates the effectiveness,enforceability,and thematic orientation of these regulations in grassroots dispute resolution.Findings reveal a pronounced reliance on moral governance provisions,limited judicial recognition,and significant implementation challenges due to the predominance of non-binding(soft)clauses.The study recommends enhancing judicial recognition through formal confirmation mechanisms,increasing legally binding clauses,and integrating village-level governance more closely with formal judicial processes.This approach not only strengthens local governance but also provides valuable insights for nationwide replication,supporting broader goals of rural stability and governance modernization. 展开更多
关键词 Village regulations Litigation source governance Judicial recognition natural language processing Grassroots governance Tianjin municipality Legal enforceability
在线阅读 下载PDF
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
18
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 Multi-Model AI Deep Learning natural Language Processing (NLP) Explainable AI (XI) Federated Learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
Welcome to Artificial Intelligence Science and Engineering
19
作者 Tingwen Huang 《Artificial Intelligence Science and Engineering》 2025年第1期I0001-I0002,共2页
Over the past decade,artificial intelligence(AI)has evolved at an unprecedented pace,transforming technology,industry,and society.From diagnosing diseases with remarkable accuracy to powering self-driving cars and rev... Over the past decade,artificial intelligence(AI)has evolved at an unprecedented pace,transforming technology,industry,and society.From diagnosing diseases with remarkable accuracy to powering self-driving cars and revolutionizing personalized learning,AI is reshaping our world in ways once thought impossible.Spanning fields such as machine learning,deep learning,natural language processing,robotics,and ChatGPT,AI continues to push the boundaries of innovation.As AI continues to advance,it is vital to have a platform that not only disseminates cutting-edge research innovations but also fosters broad discussions on its societal impact,ethical considerations,and interdisciplinary applications.With this vision in mind,we proudly introduce Artificial Intelligence Science and Engineering(AISE)-a journal dedicated to nurturing the next wave of AI innovation and engineering applications.Our mission is to provide a premier outlet where researchers can share high-quality,impactful studies and collaborate to advance AI across academia,industry,and beyond. 展开更多
关键词 machine learning chatgpt machine learningdeep learningnatural language processingroboticsand natural language processing diagnosing diseases remarkable accuracy ROBOTICS research innovations artificial intelligence
在线阅读 下载PDF
Multi-Label Movie Genre Classification with Attention Mechanism on Movie Plots
20
作者 Faheem Shaukat Naveed Ejaz +3 位作者 Rashid Kamal Tamim Alkhalifah Sheraz Aslam Mu Mu 《Computers, Materials & Continua》 2025年第6期5595-5622,共28页
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ... Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques. 展开更多
关键词 Multi-label classification artificial intelligence movie genre classification hierarchical attention mechanisms natural language processing content recommendation text-based genre classification explainable AI(Artificial Intelligence) transformer models BERT
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部