期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
基于变量选择和POA-NARX的SNCR脱硝系统出口NO_(x)浓度动态软测量模型
1
作者 赵征 梁磊 刘赛恒 《动力工程学报》 北大核心 2025年第4期592-601,共10页
针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统内部工况不稳定、影响出口NO_(x)浓度因素多以及无法及时准确测量出口NO_(x)浓度等问题,提出了一种基于变量选择和鹈鹕优化算法-非线性自回归(POA-NARX)的SNCR脱硝系统出口NO_(x)浓度动态... 针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统内部工况不稳定、影响出口NO_(x)浓度因素多以及无法及时准确测量出口NO_(x)浓度等问题,提出了一种基于变量选择和鹈鹕优化算法-非线性自回归(POA-NARX)的SNCR脱硝系统出口NO_(x)浓度动态软测量模型。通过机理分析SNCR脱硝系统出口NO_(x)浓度的影响因素,初筛特征变量;利用改进的快速相关过滤(FCBF)算法选择高相关变量,去除强冗余的变量;再利用数据趋势分析法和互信息算法进行迟延估计;最后利用鹈鹕优化算法确定最佳系统变量阶次,建立SNCR脱硝系统出口NO_(x)浓度动态软测量模型。实验结果表明:经过变量筛选和时滞分析的NARX动态模型准确性显著提升;POA-NARX模型的预测效果明显优于其他他软测量模型。 展开更多
关键词 垃圾焚烧炉 SNCR 快速相关过滤算法 narx神经网络 鹈鹕优化算法 软测量
在线阅读 下载PDF
基于NARX神经网络的瞬态虚拟排温传感器
2
作者 周圣凯 寇传富 +3 位作者 叶宇 杜宇 戴振朝 陈美玲 《内燃机工程》 北大核心 2025年第5期69-75,共7页
基于台架采集数据,采用外部输入非线性自回归(nonlinear autoregressive model with exogenous input,NARX)神经网络建立了具备瞬态特性的柴油机排气温度计算模型作为虚拟传感器,并采用并发式训练方法对模型进行训练。将结果与前馈神经... 基于台架采集数据,采用外部输入非线性自回归(nonlinear autoregressive model with exogenous input,NARX)神经网络建立了具备瞬态特性的柴油机排气温度计算模型作为虚拟传感器,并采用并发式训练方法对模型进行训练。将结果与前馈神经网络、长短期记忆网络(long short term memory,LSTM)神经网络及量产发动机的排温传感器采集结果进行对比。经验证,稳态工况下,两种神经网络均能达到较高精度;欧洲瞬态循环(European transient cycle,ETC)工况下,NARX神经网络计算温度的最大偏差为6.6℃,量产发动机排温传感器测得温度最大偏差为45.9℃。NARX神经网络所需的计算时间约为现有电控单元排温模型的2.5倍。 展开更多
关键词 外部输入非线性自回归模型 神经网络 瞬态 柴油机 排气温度 虚拟传感器
在线阅读 下载PDF
基于PCA-LM-NARX的禽舍室温预测模型
3
作者 钟宁帆 高鲁宁 +1 位作者 贺凯迅 李娟 《农业工程学报》 北大核心 2025年第2期261-270,共10页
采用隧道式通风系统的禽舍室内温度容易受自然环境变化以及家禽日龄影响,难以在线准确预测。为了准确预测禽舍室内温度,该研究结合主成分分析法(principal component analysis,PCA)、莱温伯格-马夸特算法(LevenbergMarquardt method,LM... 采用隧道式通风系统的禽舍室内温度容易受自然环境变化以及家禽日龄影响,难以在线准确预测。为了准确预测禽舍室内温度,该研究结合主成分分析法(principal component analysis,PCA)、莱温伯格-马夸特算法(LevenbergMarquardt method,LM)和带外部输入的非线性自回归模型(nonlinear auto-regressive model with exogenous inputs,NARX),提出了一种PCA-LM-NARX的方法用于在线构建禽舍室内温度预测模型。该方法利用主成分分析提取影响禽舍室内温度的关键环境变量,构建基于关键环境变量的NARX神经网络室温预测模型,并利用LM算法对神经网络参数进行优化计算。考虑到禽舍室温变化的滞后特性,PCA-LM-NARX方法利用贝叶斯信息准则设计NARX神经网络的最优延迟阶数。建模过程中PCA-LM-NARX方法采用移动窗法在线更新室温预测模型参数,以适应不同日龄的家禽和自然环境的变化。试验结果显示,基于PCA-LM-NARX方法构建的室温预测模型预测未来5、15、30 min温度值的均方误差大小分别为0.022 0、0.047 2、0.077 9℃^(2);在i5-12500H型CPU上运行建模程序,平均建模用时为0.332 1 s。研究结果表明,PCA-LM-NARX方法可以构建高精度禽舍室温预测模型,并实现模型参数的快速在线更新。 展开更多
关键词 温度 预测模型 禽舍 隧道式通风系统 narx神经网络 主成分分析法
在线阅读 下载PDF
基于NARX神经网络的飞机货舱模拟烟雾近似模型
4
作者 杨建忠 李子建 陈希远 《计算机应用与软件》 北大核心 2025年第8期139-146,共8页
为解决飞机货舱模拟烟雾流场扩散规律研究中CFD(Computational Fluid Dynamics)仿真手段对研究资源的过度依赖和耗费过多的问题。提出一种新的NARX神经网络模型对CFD模型,将时间因素和流场边界条件当作影响条件对烟雾流场的扩散规律作... 为解决飞机货舱模拟烟雾流场扩散规律研究中CFD(Computational Fluid Dynamics)仿真手段对研究资源的过度依赖和耗费过多的问题。提出一种新的NARX神经网络模型对CFD模型,将时间因素和流场边界条件当作影响条件对烟雾流场的扩散规律作出预测。以CFD模型中某点的烟雾浓度和流场的边界条件作为神经网络模型的输入对其进行训练,得到神经网络代理模型。模型训练和测试结果表明,该模型可以有效代替CFD模型进行相关研究,且近似计算效果好,仿真时间大大减少。 展开更多
关键词 模拟烟雾 代理模型 CFD模型 narx神经网络
在线阅读 下载PDF
基于NARX时间序列与BP神经网络的温室大棚不同采暖方式温度预测及节能性研究
5
作者 张伟 秦波 +8 位作者 戈小龙 黄存富 郭文强 李猛 邓晨 崔凤虎 谢小瓯 杨利冬 郭枭 《现代农业研究》 2025年第7期62-72,91,共12页
温度是调控温室大棚作物生长的核心环境参数,不同采暖方式形成的热动态具有很大差异,且传统静态预测模型难以满足复杂热环境的预测需求。本研究结合底角+侧墙暖板、空中悬挂裸膜、墙面装裸膜三种不同采暖方式测温点的温度数据,分别构建... 温度是调控温室大棚作物生长的核心环境参数,不同采暖方式形成的热动态具有很大差异,且传统静态预测模型难以满足复杂热环境的预测需求。本研究结合底角+侧墙暖板、空中悬挂裸膜、墙面装裸膜三种不同采暖方式测温点的温度数据,分别构建了不同采暖方式的传统BP、GA-BP及NARX时间序列神经网络温度预测模型,并结合模型的训练效果、预测精度以及不同采暖方式的节能性进行对比分析。结果表明:NARX神经网络模型训练收敛性与预测精度均显著优于BP和GA-BP模型;NARX神经网络模型中区域1(底角+侧墙暖板)模型预测效果最好,区域2(空中悬挂裸膜)次之,区域3(墙面装裸膜)预测效果欠佳;能耗评估表明,区域1采暖方式的能耗最低,单位面积温差能耗率仅为0.00789 kW・h/(m^(2)·℃·h),区域2次之,区域3能耗最高。本研究通过构建温室大棚内不同区域环境温度的精准预测模型,为温室大棚热环境调控提供了精细化管理依据。此外,通过节能性分析得到能耗较低的最优采暖方式(底角+侧墙暖板),在保障作物生长适宜温度的基础上提升了能源利用效率,为设施农业的精准化管理与可持续发展提供了理论指导。 展开更多
关键词 温室大棚 作物生长 温度 narx时间序列神经网络 BP神经网络 GA-BP神经网络 节能性
在线阅读 下载PDF
基于NARX神经网络系统辨识的振动台迭代学习控制研究 被引量:1
6
作者 郭迎庆 朱文 +3 位作者 刘少帅 李世东 景兴建 徐赵东 《现代制造工程》 CSCD 北大核心 2024年第12期37-47,共11页
针对传统振动台台面控制效果不佳的问题,提出了一种自适应迭代学习控制算法,该算法在原有的位移三参量控制系统基础上构建外部位移闭环,形成双闭环控制系统。同时为更准确地模拟振动台的动态行为,引入灰狼优化(GWO)算法优化非线性有源... 针对传统振动台台面控制效果不佳的问题,提出了一种自适应迭代学习控制算法,该算法在原有的位移三参量控制系统基础上构建外部位移闭环,形成双闭环控制系统。同时为更准确地模拟振动台的动态行为,引入灰狼优化(GWO)算法优化非线性有源自回归(NARX)神经网络对振动台模型辨识。仿真结果表明,利用GWO-NARX神经网络进行振动台模型辨识,取得了较高的辨识效果,精度可达99.8%。在辨识模型的基础上,利用自适应迭代学习控制算法极大地提高了振动台的控制精度,最大误差较原系统下降了49.6%。与传统的NARX神经网络进行振动台模型辨识相比,GWO-NARX神经网络辨识效果更好,模型更贴近真实系统;与传统的三参量控制系统相比,自适应迭代学习控制算法提高了振动台波形复现精度,并且能够更好地适应系统的复杂性,为实际工程应用提供了可靠的技术支持和解决方案。 展开更多
关键词 电动式振动台 自适应迭代学习 narx神经网络 系统辨识
在线阅读 下载PDF
基于组合NARX神经网络的非平稳含噪混沌时间序列在线预测 被引量:2
7
作者 葛佳昊 向锦武 李道春 《航空学报》 EI CAS CSCD 北大核心 2024年第21期295-308,共14页
针对混沌时间序列演化复杂,数据非平稳特征及噪声严重影响混沌时间序列短期预测精度的问题,提出了基于前向差分、改进小波包去噪和外因输入的非线性自回归网络(FD-IWPD-NARX)的非平稳含噪混沌时间序列(NNCTS)在线组合预测方法。在滚动... 针对混沌时间序列演化复杂,数据非平稳特征及噪声严重影响混沌时间序列短期预测精度的问题,提出了基于前向差分、改进小波包去噪和外因输入的非线性自回归网络(FD-IWPD-NARX)的非平稳含噪混沌时间序列(NNCTS)在线组合预测方法。在滚动时域框架下,采用前向差分平稳窗口内时间序列数据,改进小波包去噪阈值函数改善数据去噪效果,最后通过串并行闭环NARX神经网络对平稳去噪的混沌时间序列进行训练和测试。结果表明,前向差分和提出的改进小波包去噪可以有效提升NARX神经网络的预测性能;与不分窗NARX神经网络、循环神经网络(RNN)和标准长短期记忆网络(LSTM)相比,FD-IWPD-NARX网络可基于少量数据完成模型训练,在预测精度方面具有优势,且每窗模型的训练平均时长缩短至0.12 s,具有在线应用潜力。 展开更多
关键词 含噪非平稳混沌时间序列 组合神经网络 narx神经网络 改进小波包去噪 在线预测
原文传递
一种基于NARX神经网络的振动主动控制方法 被引量:2
8
作者 宋春生 熊学春 +1 位作者 陈泊远 杜刚 《噪声与振动控制》 CSCD 北大核心 2024年第2期1-7,260,共8页
针对主被动混合隔振系统中次级通道的非线性因素和时变特性,设计一种基于有源非线性自回归神经网络(Nonlinear Auto-regressive With Exogenous Inputs Neural Network,NARX-NN)的次级通道系统辨识的方法,并成功应用于振动主动控制系统... 针对主被动混合隔振系统中次级通道的非线性因素和时变特性,设计一种基于有源非线性自回归神经网络(Nonlinear Auto-regressive With Exogenous Inputs Neural Network,NARX-NN)的次级通道系统辨识的方法,并成功应用于振动主动控制系统中。首先,使用NARX神经网络对次级通道进行辨识得到准确的次级通道模型;其次,采用FIR滤波器重构初级通道的输出,从而获得作动器的输出信号,基于重构得到数据对辨识的网络进行在线学习,可以避免由白噪声激励在系统中带来的随机振动对控制效果的影响;最后搭建仿真模型以及实验平台,仿真结果表明,该控制算法可以克服次级通道的时变性导致的次级通道失真问题;实验结果表明,该算法对15、20 Hz的线谱分别取得30.1、40.4 dB的能量衰减效果,能够有效地实现振动主动控制。 展开更多
关键词 振动与波 Fx-LMS前馈控制 narx神经网络 振动主动控制 在线系统辨识
在线阅读 下载PDF
NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh 被引量:1
9
作者 Abdullah Al Jami Meher Uddin Himel +2 位作者 Khairul Hasan Shilpy Rani Basak Ayesha Ferdous Mita 《Journal of Groundwater Science and Engineering》 2020年第2期118-126,共9页
Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of ground... Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs(NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt(LM) and Bayesian Regularization(BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error(MSE), coefficient of determination(R^2), and Nash-Sutcliffe coefficient of efficiency(NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period. 展开更多
关键词 narx neural networks Artificial neural networks Groundwater level Levenberg-Marquardt Algorithm(LMA) Bayesian Regularization Algorithm(BRA)
在线阅读 下载PDF
基于SSA-NARX的航空发动机动态特性参数辨识方法 被引量:1
10
作者 陈子桥 洪军 +1 位作者 肖刚 温新 《热能动力工程》 CAS CSCD 北大核心 2024年第1期205-215,共11页
针对航空发动机动态特性的建模问题,提出一种基于麻雀搜索算法(SSA)优化NARX神经网络的动态特性参数辨识方法。利用SSA对NARX网络的权值与偏置进行迭代寻优,使网络具备更高的准确度与泛化能力;利用优化后的NARX网络进行动态参数辨识;使... 针对航空发动机动态特性的建模问题,提出一种基于麻雀搜索算法(SSA)优化NARX神经网络的动态特性参数辨识方法。利用SSA对NARX网络的权值与偏置进行迭代寻优,使网络具备更高的准确度与泛化能力;利用优化后的NARX网络进行动态参数辨识;使用航空发动机飞行测试数据集进行了仿真测试。结果表明:SSA-NARX方法明显优于NARX和PSO-NARX方法。SSA-NARX方法的输出参数N_(1),N_(2)和排气温度(EGT)与真实值的最大相对误差绝对值δ_(max)分别降低至3.81%,1.24%和3.47%;动态特性指标T_(i)与T_(t)与真实值的相对误差均小于5%;经10次交叉试验,参数N_(1),N_(2)和EGT的测试结果均方根误差均值RMSE_(m)分别为0.29,0.18和1.50。模型的准确性、实时性与稳健性均满足了仿真需求。 展开更多
关键词 航空发动机 数据驱动 麻雀搜索算法 非线性自回归神经网络 动态模型辨识
原文传递
NARX神经网络微地震P波有效事件自动拾取方法研究 被引量:2
11
作者 罗浩 彭代平 +1 位作者 黄鹏 赵驰 《地球物理学进展》 CSCD 北大核心 2024年第6期2345-2356,共12页
有效事件拾取为微地震数据处理中基础且关键的环节,传统拾取方法的拾取效果严重依赖拾取参数的选取,且易受信号特征与信噪比的影响,难以满足海量监测数据实时处理的要求.基于此,为有效满足当前大面积、宽方位、高密度监测数据的处理需求... 有效事件拾取为微地震数据处理中基础且关键的环节,传统拾取方法的拾取效果严重依赖拾取参数的选取,且易受信号特征与信噪比的影响,难以满足海量监测数据实时处理的要求.基于此,为有效满足当前大面积、宽方位、高密度监测数据的处理需求,基于NARX神经网络的结构特性,搭建满足需求的网络模型,并将预处理后的合成与实测微地震信号馈入其Series-Parallel反馈结构进行训练,使其充分学习信号的波形特征,而后将待拾取监测信号经简单处理后输入性能良好的NARX模型,输出其特征曲线,并通过阈值拾取出有效事件.测试数据库合成与实测信号的拾取情况以及与STA/LTA法的对比表明,NARX法可以完成微地震信号有效事件的拾取,且具有较强抗噪性与适应性,并较STA/LTA法有一定优越性,有潜质成为微地震监测信号事件拾取的有效工具之一. 展开更多
关键词 微地震监测 有效事件拾取 narx神经网络
原文传递
基于NARX和sEMG的肘关节连续运动预测
12
作者 陈砚 单泉 《科学技术创新》 2024年第24期75-78,共4页
为了建立表面肌电信号(Surface Electromyography,sEMG)与人体肘关节连续运动量的精确预测模型,通过传感器记录肘关节屈伸角并采集与上肢运动相关联的肌肉表面肌电信号,经滤波处理后从中提取时域特征;在此基础上将非线性自回归(non-line... 为了建立表面肌电信号(Surface Electromyography,sEMG)与人体肘关节连续运动量的精确预测模型,通过传感器记录肘关节屈伸角并采集与上肢运动相关联的肌肉表面肌电信号,经滤波处理后从中提取时域特征;在此基础上将非线性自回归(non-linear autoregressive,NARX)神经网络用于肘关节连续运动角度的预测,最终根据sEMG信号识别出的人体意图所对应的估计肘角。大量的实验结果验证了利用本文建立的模型可以精确估计人体肘关节连续运动角度,该模型可以有效用于人体假肢和辅助装置的控制,且本文方法的估计性能优于反向传播(back propagation,BP)神经网络。 展开更多
关键词 表面肌电信号 运动估计 narx神经网络 肘关节角度
在线阅读 下载PDF
基于GWO算法和NARX神经网络训练方法的高精度热电偶动态补偿模型构建与实践研究
13
作者 张勇生 《计量与测试技术》 2024年第7期62-65,共4页
为提升热电偶测量精度和准确度,本文基于GWO算法和NARX神经网络训练方法,构建高精度的热电偶动态补偿模型,并进行实践研究。结果表明:该模型具有较高的精度和准确性,能有效预测和补偿热电偶的温度数据,对提高热电偶测量系统的性能和稳... 为提升热电偶测量精度和准确度,本文基于GWO算法和NARX神经网络训练方法,构建高精度的热电偶动态补偿模型,并进行实践研究。结果表明:该模型具有较高的精度和准确性,能有效预测和补偿热电偶的温度数据,对提高热电偶测量系统的性能和稳定性具有重要意义,可广泛用于工业自动化和环境监测等领域。 展开更多
关键词 GWO算法 narx神经网络 高精度热电偶 动态补偿模型
在线阅读 下载PDF
基于Narx网络模型的系泊缆截断点运动计算 被引量:4
14
作者 张隆辉 刘正锋 +2 位作者 魏纳新 匡晓峰 范亚丽 《船舶力学》 EI CSCD 北大核心 2019年第8期936-947,共12页
主动式截断混合模型试验技术是一种新兴的海洋工程试验技术,然而由于缆索运动具有较强的非线性特征,时域内系泊缆截断点处的运动往往需要采用数值方法进行迭代求解,运算量十分可观,成为实现主动式混合模型试验技术的障碍。文中提出一种... 主动式截断混合模型试验技术是一种新兴的海洋工程试验技术,然而由于缆索运动具有较强的非线性特征,时域内系泊缆截断点处的运动往往需要采用数值方法进行迭代求解,运算量十分可观,成为实现主动式混合模型试验技术的障碍。文中提出一种基于Narx网络模型计算时域内缆索截断点处加速度方法,该方法较一般数值方法所需要的计算时间更少且能保证较好的计算精度。 展开更多
关键词 narx网络 主动式截断系统 系泊缆
在线阅读 下载PDF
基于NARX神经网络的日光温室湿度预测模型研究 被引量:9
15
作者 王红君 史丽荣 +1 位作者 赵辉 岳有军 《广东农业科学》 CAS CSCD 北大核心 2014年第20期170-172,177,共4页
在日光温室湿度预测模型建模中,由于输入因子间存在复杂耦合关系以及冗余的条件属性,导致网络训练难以收敛且精度不高。选用影响日光温室湿度的环境因子组成数据样本,采用主成分分析方法对样本集进行解耦降维处理,以采用主成分分析后的... 在日光温室湿度预测模型建模中,由于输入因子间存在复杂耦合关系以及冗余的条件属性,导致网络训练难以收敛且精度不高。选用影响日光温室湿度的环境因子组成数据样本,采用主成分分析方法对样本集进行解耦降维处理,以采用主成分分析后的数据样本作为输入,以日光温室内湿度作为输出,采用贝叶斯正则化算法构建NARX神经网络模型,对日光温室湿度进行预测。仿真结果表明,基于NARX神经网络建立的预测模型具有很强的非线性动态描述能力,能够对室内湿度值做出准确的预测。 展开更多
关键词 日光温室 湿度 主成分分析 narx神经网络
在线阅读 下载PDF
基于NARX神经网络航空发动机参数动态辨识模型 被引量:16
16
作者 耿宏 任道先 杜鹏 《计算机工程与应用》 CSCD 北大核心 2017年第12期241-248,共8页
针对航空发动机参数非线性动态特性,提出一种基于外部输入非线性自回归(NARX)神经网络的发动机参数动态辨识模型。主要思路是根据NARX网络的非线性时序预测特性,结合发动机参数的稳态和动态参数,提出一种基于偏稳态差值预测的NARX参数... 针对航空发动机参数非线性动态特性,提出一种基于外部输入非线性自回归(NARX)神经网络的发动机参数动态辨识模型。主要思路是根据NARX网络的非线性时序预测特性,结合发动机参数的稳态和动态参数,提出一种基于偏稳态差值预测的NARX参数动态模型结构。设计了SP-P辨识结构,整定了模型内部结构参数并建立N1(低压转子转速)、N2(高压转子转速)、EGT(涡轮后排气温度)参数非线性差分预测模型。最后依据某发动机试车样本,对推杆加减速时N1、N2、EGT动态辨模型进行仿真。仿真结果表明,N2相对误差小于0.2%,N1相对误差小于0.3%,EGT相对误差小于1℃,满足发动机试车仿真需要。最后,将所建模型应用于某A320机务维修训练器的发动机仿真系统。 展开更多
关键词 航空发动机 动态模型 非线性系统辨识 narx网络
在线阅读 下载PDF
基于NARX神经网络的电子电路电磁脉冲响应建模 被引量:9
17
作者 吴启蒙 魏明 +2 位作者 庞雷 施威 祝华杰 《高压电器》 CAS CSCD 北大核心 2013年第11期62-68,共7页
针对内部结构不详、器件参数未知的复杂电子电路电磁脉冲响应建模这一难点问题,笔者采用NARX神经网络建立动力学模型,并提出了采用正弦波扫频信号及其电路响应作为训练数据的方法,同时给出了NARX神经网络建模的理论基础及设计步骤,证明... 针对内部结构不详、器件参数未知的复杂电子电路电磁脉冲响应建模这一难点问题,笔者采用NARX神经网络建立动力学模型,并提出了采用正弦波扫频信号及其电路响应作为训练数据的方法,同时给出了NARX神经网络建模的理论基础及设计步骤,证明了集总参数电路响应模型可用NARX神经网络所建立的动力学模型替代,从而得到了基于数据的电子电路电磁脉冲响应建模方法。运用ADS软件完成滤波器电路及射频放大电路的设计与仿真,建立NARX神经网络模型并得到了较好的预测效果,验证了该方法适用于集总参数电路的电磁脉冲响应预测。对NARX神经网络的缺陷进行简要分析,并提出使用遗传算法优化网络参数和使用支持向量机或极限学习机替代NARX神经网络中前馈神经网络部分的改进方法,为后续研究工作指引方向。 展开更多
关键词 narx神经网络 电磁脉冲 集总参数电路 均方误差 误差百分比 扫频信号
在线阅读 下载PDF
基于PCA-NARX的锂离子电池剩余使用寿命预测 被引量:30
18
作者 庞晓琼 王竹晴 +3 位作者 曾建潮 贾建芳 史元浩 温杰 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第4期406-412,共7页
目前基于数据驱动的锂离子电池RUL预测方法不能较好地适应于同类型不同电池的RUL预测,且预测精度易受健康因子冗余或不足的影响.针对以上问题,提出一种结合主成分分析(PCA)特征融合与非线性自回归(NARX)神经网络的锂离子电池RUL间接预... 目前基于数据驱动的锂离子电池RUL预测方法不能较好地适应于同类型不同电池的RUL预测,且预测精度易受健康因子冗余或不足的影响.针对以上问题,提出一种结合主成分分析(PCA)特征融合与非线性自回归(NARX)神经网络的锂离子电池RUL间接预测框架.首先提取多个能反映电池性能退化的可测参数,并将PCA去除冗余后的结果作为预测健康因子;然后利用一组电池的全寿命数据构建基于NARX神经网络的健康因子和容量预测模型,对同类型不同电池预测时将该电池寿命前期健康因子作为输入,即可间接预测出其RUL.最后实验结果表明所提框架在同类型不同电池RUL的预测中精度较高且适应性较强. 展开更多
关键词 锂离子电池 剩余使用寿命 相关性分析 PCA算法 narx神经网络
在线阅读 下载PDF
基于NARX神经网络的轮重减载率预测 被引量:7
19
作者 潘丽莎 程晓卿 +2 位作者 秦勇 陈浩 邢宗义 《铁道车辆》 北大核心 2012年第9期4-7,1,共4页
以轨检车测出的左轨和右轨轨向不平顺、左轨和右轨高低不平顺为输入,以轨检车测出的轮重减载率为输出,采用贝叶斯正则化算法构建了NARX神经网络。仿真试验结果及与BP神经网络输出结果的对比表明,采用NARX神经网络实现轮重减载率预测是... 以轨检车测出的左轨和右轨轨向不平顺、左轨和右轨高低不平顺为输入,以轨检车测出的轮重减载率为输出,采用贝叶斯正则化算法构建了NARX神经网络。仿真试验结果及与BP神经网络输出结果的对比表明,采用NARX神经网络实现轮重减载率预测是可行的,NARX神经网络比BP神经网络更适用于减载率预测。 展开更多
关键词 narx神经网络 轨道不平顺 轮重减载率
在线阅读 下载PDF
基于NARX神经网络预测及模糊控制的互联电网CPS鲁棒控制策略研究 被引量:5
20
作者 李挺 雷霞 +3 位作者 张学虹 孔祥清 刘庆伟 柏小丽 《电力系统保护与控制》 EI CSCD 北大核心 2012年第14期58-62,68,共6页
对于传统CPS控制策略难以满足互联电力系统对鲁棒性和适应性的要求,提出了一种将NARX神经网络预测算法和模糊逻辑控制器相结合的控制方法。配合CPS下的传统PI控制器,根据CPS控制参数的预测值与当前值之间的偏差值,实现对AGC机组的预控... 对于传统CPS控制策略难以满足互联电力系统对鲁棒性和适应性的要求,提出了一种将NARX神经网络预测算法和模糊逻辑控制器相结合的控制方法。配合CPS下的传统PI控制器,根据CPS控制参数的预测值与当前值之间的偏差值,实现对AGC机组的预控制。利用Matlab的Simulink仿真软件建立了一个双区域电力系统的控制模型。仿真结果表明,新的控制方法不仅达到了改善CPS控制效果的目的,并且提高了CPS1,CPS2指标的考核率,减少了机组的调节次数,降低了运行费用,取得了一定的经济效益。 展开更多
关键词 控制性能标准 鲁棒性 narx神经网络预测算法 模糊逻辑控制器 预控制
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部