Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes.Among these,bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts,offering...Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes.Among these,bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts,offering enhanced performance and cost-efficiency in nanozyme designs.Herein,bimetallic nanozymes comprising nickel(Ni)and osmium(Os)incorporated into hyaluronate(HA)have been developed,resulting in HA-Nin/Os nanoclusters.Subsequently,comprehensive characterizations have been conducted.Further investigation has revealed that HA-Nin/Os efficiently catalyzed 3,3,5,5-tetramethylbenzidine(TMB)oxidation with hydrogen peroxide(H_(2)O_(2)),confirming its peroxidase-like behavior and role as a nanozyme.Impressively,HA-Ni_(2)/Os(Ni/Os=2:1)displays heightened substrate affinity,accelerated reaction rates,enhanced hydroxyl radical production in acidic conditions,and exhibits activity unit of 1224 U/mg,representing more than two-fold increase compared to non-Ni-supported Os nanozyme.Theoretical calculations indicate that Ni support enhances the peroxidase-like process of Os nanozyme by improving H_(2)O_(2) adsorption and TMB oxidation.Crucially,the support of Ni does not significantly alter the other enzyme-like activities of Os nanozymes,thereby enabling Ni to selectively enhance their peroxidase-like activity.In terms of application,the peroxidase-like ability of HA-Ni_(2)/Os,facilitated by HA's carboxyl groups enabling crosslinking,proves effective in a squamous carcinoma antigen immunoassay.Moreover,HA-Ni_(2)/Os exhibit reliable stability,promising as a peroxidase substitute.This work underscores the advantages of incorporating Ni into Os,specifically enhancing peroxidase-like activity,highlighting the potential of Os bimetallic nanozymes for peroxidase-based applications.展开更多
Sorafenib(Sora)not only has an inhibitory effect on angiogenesis via indirectly inhibiting tumor growth through antiangiogenesis,but also can inactivate the glutathione peroxidase 4(GPX4)to induce ferroptosis.Nonethel...Sorafenib(Sora)not only has an inhibitory effect on angiogenesis via indirectly inhibiting tumor growth through antiangiogenesis,but also can inactivate the glutathione peroxidase 4(GPX4)to induce ferroptosis.Nonetheless,the therapeutic efficacy is hampered by a plethora of factors,including low bioavailability and tumor microenvironment(TME).Of particular note is the hypoxic and reductive TME,which acts as a significant impediment and poses formidable challenges to attain the most optimal treatment outcomes.Herein,we developed a novel therapeutic platform based on Sora-loaded mesoporous ferromanganese nanoparticles(PMFNs@Sora).PMFNs mimics both catalase and GPX activities.The self-sustained catalase activity enables continuous decomposition of hydrogen peroxide to generate oxygen,which alleviates hypoxia microenvironment.The GPX activity simultaneously amplifies the therapeutic efficacy of Sora.The as-synthesized PMFNs@Sora demonstrates significantly enhanced antitumor effect in vitro through apoptosis-ferroptosis,revealed by Western blot.Furthermore,PMFNs@Sora also showed effective tumor growth inhibition in vivo.This multifunctional nanoplatform offers a promising strategy for modulating the TME and enhancing cancer treatment in clinical application.展开更多
Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade...Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.展开更多
Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme syner...Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme synergy.However,the proteinaceous characteristics of lignin-degrading enzymes restrict their accessibility to certain regions of intricate lignin,resulting in the multienzyme systems being unable to fully demonstrate their effectiveness.Herein,a de novo biomimetic enzyme-nanozyme hybrid system was constructed by combiningλ-MnO_(2) nanozyme with laccase CotA from Bacillus subtilis,aimed at facilitating lignin degradation under mild conditions.The lignin degradation rate of the CotA+λ-MnO_(2) hybrid system was determined to be 25.15%,which was much higher than those of the lignin degradation systems with only laccase CotA(15.32%)orλ-MnO_(2) nanozyme(14.90%).Notably,the proportion of aromatic chemicals in the products derived from the hybrid system reached as much as 48%,which was 41.2%and 118.2%higher than those of the CotA-andλ-MnO_(2)-catalyzed systems,respectively.Analysis of products mapping and lignin structure changes suggested that the higher proportion of aromatic compounds in the CotA+λ-MnO_(2)hybrid system was more likely to benefit from the laccase-mediated methoxylation.Moreover,electron paramagnetic resonance analysis indicated that the intensity and kind of free radicals such as·OH and·O_(2)^(-)are closely linked to the degradation rate and reaction type.This work is the inaugural application of an enzyme-nanozyme hybrid system for lignin degradation,demonstrating the potential of the synergistic interaction between enzyme and nanozyme in the directed degradation of lignin.展开更多
As environmental pollutants pose a serious threat to socioeconomic and environmental health,the development of simple,efficient,accurate and costeffective methods for pollution monitoring and control remains a major c...As environmental pollutants pose a serious threat to socioeconomic and environmental health,the development of simple,efficient,accurate and costeffective methods for pollution monitoring and control remains a major challenge,but it is an unavoidable issue.In the past decade,the artificial nanozymes have been widely used for environmental pollutant monitoring and control,because of their low cost,high stability,easy mass production,etc.However,the conventional nanozyme technology faces significant challenges in terms of difficulty in regulating the exposed crystal surface,complex composition,low catalytic activity,etc.In contrast,the emerging single-atom nanozymes(SANs)have attracted much attention in the field of environmental monitoring and control,due to their multiple advantages of atomically dispersed active sites,high atom utilization efficiency,tunable coordination environment,etc.To date,the insufficient efforts have been made to comprehensively characterize the applications of SANs in the monitoring and control of environmental pollutants.Building on the recent advances in the field,this review systematically summarizes the main synthesis methods of SANs and highlights their advances in the monitoring and control of environmental pollutants.Finally,we critically evaluate the limitations and challenges of SANs,and provide the insights into their future prospects for the monitoring and control of environmental pollutants.展开更多
Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ...Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.展开更多
Excessive accumulation of cadmium (Cd) impairs crop growth by inducing oxidative damage through the generation of reactive oxygen species (ROS). In this study, a biocompatible ferruginated carbon quantum dots (Fe-CQDs...Excessive accumulation of cadmium (Cd) impairs crop growth by inducing oxidative damage through the generation of reactive oxygen species (ROS). In this study, a biocompatible ferruginated carbon quantum dots (Fe-CQDs) nanozyme is developed to target ROS, thereby reducing oxidative damage and improving the absorption and transfer of Cd ions in wheat. Notably, Fe-CQDs exhibit multi-enzyme activities mimicking peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), enabling effective neutralization of active species such as hydroxyl radicals (•OH), hydrogen peroxide (H_(2)O_(2)), and superoxide anions (O_(2)•^(-)). Importantly, root application of 10 mg L^(-1) Fe-CQDs alleviates Cd stress and promotes wheat growth in both hydroponic and soil cultures. Specifically, the levels of O_(2)•^(-), H_(2)O_(2), and malondialdehyde (MDA) in leaf tissues decrease, whereas the non-enzyme antioxidant, reduced glutathione (GSH), increases. Cell wall thickness in the Fe-CQDs-treated group is reduced by 42.4% compared with the Cd group. Moreover, Fe-CQDs enhance the expression of genes related to antioxidants, stress resistance, Cd detoxification, and nutrient transport. Transcriptomic and metabolomic analyses show that Fe-CQDs stimulate the production of flavonoids and regulate the activity of metal transporter genes (YSL, ABC, ZIP) to maintain ROS homeostasis. These findings highlight the potential of Fe-CQDs nanozyme platforms in mitigating oxidative damage and enhancing crop growth, offering new insights into the application of nanobiotechnology in agriculture.展开更多
Wound healing in diabetic patients presents significant challenges due to heightened risks of bacterial infection,elevated glucose levels,and insufficient angiogenesis.Nanozymes are widely employed for wound healing,b...Wound healing in diabetic patients presents significant challenges due to heightened risks of bacterial infection,elevated glucose levels,and insufficient angiogenesis.Nanozymes are widely employed for wound healing,but most current nanozyme systems exhibit only moderate activity limited by incompatible reaction microenvironments including p H and hydrogen peroxide(H_(2)O_(2))concentration.Herein,a glucoseactivated nanozyme hydrogel was developed using bovine serum albumin(BSA)-modified gold nanoparticles(Au NPs)attached to a two-dimensional(2D)metal-organic framework(MOF)(Cu-TCPP(Fe)@Au@BSA)by an in situ growth method.The Au NPs function as a glucose oxidase(GOx)-like enzyme,converting glucose to gluconic acid and H_(2)O_(2),triggering the peroxidase(POD)-like activity of Cu-TCPP(Fe)to produce hydroxyl radicals(·OH),effectively eliminating bacteria.Additionally,the modification of BSA reduces the Au NP size,enhancing enzyme activity.Both in vitro and in vivo tests demonstrate that this nanozyme hydrogel can be activated by the microenvironment to lower blood glucose,eliminate bacterial infections,and promote epithelial formation and collagen deposition,thus accelerating diabetic wound healing effectively.The multifunctional nanozyme hydrogel dressing developed in this study presents a promising therapeutic approach to enhance diabetic wound healing.展开更多
Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herei...Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.展开更多
In this work,a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90(ZrO_(2)@ZIF-90)nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion(...In this work,a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90(ZrO_(2)@ZIF-90)nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion(MP).The ZrO_(2)@ZIF-90 nanozyme with phosphatase hydrolysis activity can convert MP into p-nitrophenol(p-NP).The addition of ZrO_(2)riched in Lewis acid Zr(IV)sites significantly enhanced the phosphatase hydrolysis activity of ZIF-90.ZrO_(2)@ZIF-90 also displayed satisfactory electrocatalytic performance on account of the high surface area,high porosity and powerful enrichment ability of the ZIF-90 and the excellent ion transfer capacity of ZrO_(2).A ZrO_(2)@ZIF-90 nanozyme modified glassy carbon electrode(ZrO_(2)@ZIF-90/GCE)was then fabricated to analyze p-NP formed through MP degradation.Under the optimized conditions,the developed sensor displayed satisfactory analytical performance with a low limit of detection of 0.53μmol/L and two wide linear ranges(3-10 and 10-200μmol/L).ZrO_(2)@ZIF-90 nanozyme accomplished to the degradation and electrochemical detection of MP in river water and spiked fruits.This study identifies a promising new strategy for the design of bifunctional nanozymes for the detection of environmental hazards.展开更多
Tuning the nanozyme s activity and specificity is very crucial for developing highly sensitive sensors for various applications. Herein, selenium-doped porous N-doped carbon skeletons(Se/NC) nanozymes with highly spec...Tuning the nanozyme s activity and specificity is very crucial for developing highly sensitive sensors for various applications. Herein, selenium-doped porous N-doped carbon skeletons(Se/NC) nanozymes with highly specific peroxidase-like activity were synthesized by a MOF-pyrolysis-doping protocol. Se doping adjusted the electronic structure of NC by introducing more vacancies, defective carbon and graphitic N,and endowed the resultant Se/NC enhanced charge transfer and substrate affinity. The Se/NC exhibited specific peroxidase-mimicking activity and could catalyze 3,3,5,5-tetramethylbenzidine oxidation by H_(2)O_(2). Density functional theory(DFT) calculations and experimental trials indicated that both Se=O and C–Se–C species were the main active sites of Se/NC. The C–Se–C bond is the main catalytic active site endowing Se/NC with the property of nanozyme, while the Se=O bond effectively enhances its affinity to H_(2)O_(2) and accelerate H2O2dissociation. The Se/NC showed an approximately 185-fold increase in peroxidase-like activity compared to NC. Based on the inhibition of the peroxidase-like activity of Se/NC by methimazole, a colorimetric sensor was developed to achieve its sensitive detection with 2 nmol/L of limit of detection. It was successfully used for detecting methimazole in real samples. Current Se doping strategy simplifies the fabrication process of high performance specific nanozyme and promises great potential for environmental analysis.展开更多
The presence of the blood–brain barrier limits the drug concentration in the brain,while low concentrations of antibiotics make it difficult to kill infecting bacteria and tends to induce drug resistance,making the c...The presence of the blood–brain barrier limits the drug concentration in the brain,while low concentrations of antibiotics make it difficult to kill infecting bacteria and tends to induce drug resistance,making the clinical treatment of bacterial meningitis challenging.Herein,a nose-to-brain delivery strategy of small-sized nanozyme has been fabricated for combating bacterial meningitis,to overcome the low drug concentration and drug resistance.This strategy was achieved by a proteinsupported Au nanozyme(ANZ).With a particle size of less than 10 nm,it possesses both glucose oxidase-like and peroxidase-like activities and can generate large amounts of reactive oxygen species through a cascade effect without the addition of external H_(2)O_(2).Benefiting from the cascade catalytic amplification effect generated by its dual enzymelike activities,ANZ shows significant broad-spectrum antibacterial activity without inducing bacterial resistance in vitro.Notably,small-sized ANZ exhibits higher brain entry efficiency and greater accumulation after intranasal administration compared to oral or intravenous administration.In a mouse model of bacterial meningitis,the mice treated with ANZ had lower bacterial loads in the brain and higher survival and clinical behavior scores compared to the classical antibiotic ceftriaxone.Additionally,the meningitis mice exhibited undamaged cognitive and behavioral abilities,indicating the excellent biocompatibility of ANZ.The above results demonstrate that nose-to-brain delivery of ANZ exhibits high intracerebral accumulation,strong antibacterial efficacy and does not lead to bacterial resistance.It holds broad prospects for the treatment of bacterial meningitis.展开更多
The authors regret to report some missing information in the synthetic reagents and associated changes of the paper.On page 511,the author information reads:“5.0 mmol of citric acid(C_(6)H_(8)O_(7)),5.0 mmol of ferri...The authors regret to report some missing information in the synthetic reagents and associated changes of the paper.On page 511,the author information reads:“5.0 mmol of citric acid(C_(6)H_(8)O_(7)),5.0 mmol of ferric chloride hexahydrate(FeCl_(3)·6H_(2)O),and 10.0 mmol of o-phenylenediamine(C_(6)H_(8)N_(2))were combined with 40 mL of deionized water and magnetically stirred until fully dissolved.”展开更多
Although diverse signal-amplified methods have been committed to improve the sensitivity of surface plasmon resonance(SPR)biosensing,introducing convenient and robust signal amplification strategy into SPR biosensing ...Although diverse signal-amplified methods have been committed to improve the sensitivity of surface plasmon resonance(SPR)biosensing,introducing convenient and robust signal amplification strategy into SPR biosensing remains challenging.Here,a novel nanozyme-triggered polymerization amplification strategy was proposed for constructing highly sensitive surface plasmon resonance(SPR)immunosensor.In detail,Au@Pd core-shell nanooctahedra nanozyme with superior peroxidase(POD)-like activity was synthesized and utilized as a label probe.Simultaneously,Au@Pd core-shell nanooctahedra nanozyme can catalyze the decomposition of H_(2)O_(2)to form hydroxyl radicals(·OH)that triggers the polymerization of aniline to form polyaniline attaching on the surface of sensor chip,significantly amplifying SPR responses.The sensitivity of SPR immunosensor was enhanced by nanozyme-triggered polymerization amplification strategy.Using human immunoglobulin G(HIgG)as a model,the constructed SPR immunosensor obtains a wide linear range of 0.005–1.0μg/m L with low detection limit of 0.106 ng/m L.This research provides new sights on establishing sensitive SPR immunosensor and may evokes more inspiration for developing signal amplification methods based on nanozyme in biosensing.展开更多
Tumor heterogeneity and diversity significantly undermine the effectiveness of monotherapy.Collaborative therapy emerges as a promising approach to mitigate tumor recurrence resulting from monotherapy.Combining chemod...Tumor heterogeneity and diversity significantly undermine the effectiveness of monotherapy.Collaborative therapy emerges as a promising approach to mitigate tumor recurrence resulting from monotherapy.Combining chemodynamic therapy(CDT)with photothermal therapy(PTT)offers a compelling solution for eradicating residual tumor cells post-PTT.In this study,we harness the Fenton-like response facilitated by glucose oxidase(GOD)and the mild hyperthermia induced by polyethyleneimine(PEI)functionalized nitrogen-containing graphene oxide to enhance tumor therapy through a metal-free bionic nanozyme.GOD catalyzes a substantial amount of hydrogen peroxide,and,with the carrier's involvement,triggers a Fenton-like reaction,yielding a wealth of hydroxyl radicals.These hydroxyl radicals effectively target tumor cells following photothermal action,bolstering CDT and culminating in a bidirectional amplification treatment that effectively prevents tumor recurrence and metastasis.This research amalgamates the physical and chemical attributes of nanomaterials with the unique characteristics of the tumor microenvironment,presenting a compelling and efficacious alternative for tumor treatment.展开更多
Aflatoxin B1(AFB1)is a carcinogenic toxin naturally produced in most food crops that severely threaten human health,and effective methods are urgent to improve the detection accuracy.Herein an indirect competitive imm...Aflatoxin B1(AFB1)is a carcinogenic toxin naturally produced in most food crops that severely threaten human health,and effective methods are urgent to improve the detection accuracy.Herein an indirect competitive immunosorbent approach was elaborately developed based on high-affinity immunoglobulin G(IgG)coupled CuO-anchored Fe_(3)O_(4)nanozymes for precise and ultrasensitive detection of AFB_(1)in food crops including peanut,corn and wheat.The high-affinity nanozymes were fabricated by the assembly of inner core Fe_(3)O_(4)nanoparticles and mesoporous silica capping layer,Cu O further situated within large aperture of the coating layer via in-situ growth,and then conjugated with ligand rabbit anti-mouse Ig G,which can specifically bind with AFB_(1).The results showed the hybrid high-affinity nanozymes displayed enhanced peroxidasemimic activities and catalytic performances,achieving a linear range of 0.06-61.93(lg(ng/mL))and a detection limit of 0.0037 ng/mL,30 times better than that of the conventional enzyme-linked immunosorbent assay.The constructed nanozymes were successfully applied to the detection of AFB_(1)in food products with an average spiked recovery of 96.53%and relative standard deviations less than 2.8%.Therefore,the accurate hybrid nanozymes may serve for AFB_(1)detection in various foods in future.展开更多
Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among oth...Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity.展开更多
Deprivation of glucose and lactate provides an effective pathway to terminate the nutrients supplement for tumor growth.In this work,biomimetic nanozymes called m@BGLC are constructed for catalytic tumor inhibition th...Deprivation of glucose and lactate provides an effective pathway to terminate the nutrients supplement for tumor growth.In this work,biomimetic nanozymes called m@BGLC are constructed for catalytic tumor inhibition through nutrients deprivation and oxidative damage induction.Concretely,the catalytic enzymes of glucose oxidase(GOx),lactate oxidase(LOx)and chloroperoxidase(CPO)are precrosslinked with bovine serum albumin(BSA)to construct nanozymes,which are then biomimetic functionalized with cancer cell membrane to prepare m@BGLC.Benefiting from the biomimetic camouflage with homologous cell membrane,m@BGLC inherit homotypic binding and immune escape abilities,facilitating the tumor targeting accumulation and preferable cell internalization for improved drug delivery efficiency.Subsequently,under the cascade catalysis of nanozymes,m@BGLC consume glucose and lactate for tumor starvation therapy through nutrients deprivation,and meanwhile,the resulting hyprochloric acid(HClO)causes an oxidative damage of cells to synergistically inhibit tumor growth.In vitro and in vivo findings demonstrate a robust tumor eradication effect of m@BGLC without obvious adverse reactions via the targeted combination therapy.Such cascade catalytic nanomedicine may inspire the development of sophisticated strategies for tumor combination therapy under unfavorable tumor microenvironments.展开更多
Biomimetic nanozymes opens up new opportunities for sensitive,rapid and field detection of organophosphorus pesticides(OPs).However,it still remains challenges in how to improve the sensitivity and stability of biomim...Biomimetic nanozymes opens up new opportunities for sensitive,rapid and field detection of organophosphorus pesticides(OPs).However,it still remains challenges in how to improve the sensitivity and stability of biomimetic nanozymes under harsh conditions.Herein,we synthesized a novel biomimetic nanozyme composed of hemin and bovine serum albumin(BSA)in the nanopores of poly-l-lysine methacryloyl(PLMA)inverse opal hydrogel(PLMA-Hemin-BSA).PLMA-Hemin-BSA achieves superior peroxidase-like activity and shows high stability due to the confinement effect.A multi-enzyme cascade reaction was constructed for the colorimetric detection of five widely used OPs by integrating PLMAHemin-BSA with natural choline oxidase and acetylcholinesterase.The detection limits for dichlorvos,chlorpyrifos,paraoxon,methamidophos,and parathion were as low as 0.024,0.073,0.12,0.56,and 1.4 ng/mL,respectively.More importantly,the average recovery rates and the relative standard deviations(RSD)of chlorpyrifos in paddy water,soil and wheat samples were 86.62%-100.13%and 2.08%-8.65%,which meet the standard of the International Union of Pure and Applied Chemistry(IUPAC,recoveries of 70%-120%with RSD<20%).This study represented advanced methods toward enhancing the activity and stability of biomimetic nanozymes via spatial nanopores-assisted strategy.展开更多
Nanozymes,as a new generation of artificial enzymes,exhibit similar chemical properties,catalytic efficiency,and reaction kinetics to natural enzymes.Nanozymes can offer several advantages over natural enzymes,includi...Nanozymes,as a new generation of artificial enzymes,exhibit similar chemical properties,catalytic efficiency,and reaction kinetics to natural enzymes.Nanozymes can offer several advantages over natural enzymes,including the decreased cost,the increased stability,and the enhanced catalytic activity.These advantages have positioned nanozymes as a research focus in the fields of chemistry,materials and biomedicine.Polyoxometalates(POMs)and their composites have been found to possess excellent catalytic capabilities as peroxidase mimics.Given this,this review aims to provide a comprehensive overview of the POM-based nanozymes,covering their structural categorization,evolution,and various applications over the past decade.The dynamic nature of this field would promise the intriguing challenges and opportunities in the future.Additionally,we address the existing issues with the POM-based peroxidase-like enzymes and suggest the potential directions for future research.This review would serve as a valuable resource for researchers seeking to develop the improved therapeutic and diagnostic technologies using the POM-based nanozymes,thereby advancing the fields of biochemistry and materials science.展开更多
基金financial support from the Natural Science Foundation of Fujian Province(No.2022J01271)the Joint Funds for the Innovation of Science and Technology,Fujian Province(No.2023Y9226)+1 种基金the Introduced High-Level Talent Team Project of Quanzhou City(No.2023CT008)the Doctoral Research Foundation Project of the Second Affiliated Hospital of Fujian Medical University(No.BS202201)。
文摘Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes.Among these,bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts,offering enhanced performance and cost-efficiency in nanozyme designs.Herein,bimetallic nanozymes comprising nickel(Ni)and osmium(Os)incorporated into hyaluronate(HA)have been developed,resulting in HA-Nin/Os nanoclusters.Subsequently,comprehensive characterizations have been conducted.Further investigation has revealed that HA-Nin/Os efficiently catalyzed 3,3,5,5-tetramethylbenzidine(TMB)oxidation with hydrogen peroxide(H_(2)O_(2)),confirming its peroxidase-like behavior and role as a nanozyme.Impressively,HA-Ni_(2)/Os(Ni/Os=2:1)displays heightened substrate affinity,accelerated reaction rates,enhanced hydroxyl radical production in acidic conditions,and exhibits activity unit of 1224 U/mg,representing more than two-fold increase compared to non-Ni-supported Os nanozyme.Theoretical calculations indicate that Ni support enhances the peroxidase-like process of Os nanozyme by improving H_(2)O_(2) adsorption and TMB oxidation.Crucially,the support of Ni does not significantly alter the other enzyme-like activities of Os nanozymes,thereby enabling Ni to selectively enhance their peroxidase-like activity.In terms of application,the peroxidase-like ability of HA-Ni_(2)/Os,facilitated by HA's carboxyl groups enabling crosslinking,proves effective in a squamous carcinoma antigen immunoassay.Moreover,HA-Ni_(2)/Os exhibit reliable stability,promising as a peroxidase substitute.This work underscores the advantages of incorporating Ni into Os,specifically enhancing peroxidase-like activity,highlighting the potential of Os bimetallic nanozymes for peroxidase-based applications.
基金the financial support by National Natural Science Foundation of China(No.82171997)the Guangdong Basic and Applied Basic Research Fund Foundation(No.2023B1515120073)+2 种基金the Science and Technology Planning Project of Guangdong Province(No.2023B1212060013)Guangzhou Science and Technology Bureau(No.2023A03J0708)Shenzhen Science and Technology Program(Nos.JCYJ20230807111120043,JCYJ20220818102014028)。
文摘Sorafenib(Sora)not only has an inhibitory effect on angiogenesis via indirectly inhibiting tumor growth through antiangiogenesis,but also can inactivate the glutathione peroxidase 4(GPX4)to induce ferroptosis.Nonetheless,the therapeutic efficacy is hampered by a plethora of factors,including low bioavailability and tumor microenvironment(TME).Of particular note is the hypoxic and reductive TME,which acts as a significant impediment and poses formidable challenges to attain the most optimal treatment outcomes.Herein,we developed a novel therapeutic platform based on Sora-loaded mesoporous ferromanganese nanoparticles(PMFNs@Sora).PMFNs mimics both catalase and GPX activities.The self-sustained catalase activity enables continuous decomposition of hydrogen peroxide to generate oxygen,which alleviates hypoxia microenvironment.The GPX activity simultaneously amplifies the therapeutic efficacy of Sora.The as-synthesized PMFNs@Sora demonstrates significantly enhanced antitumor effect in vitro through apoptosis-ferroptosis,revealed by Western blot.Furthermore,PMFNs@Sora also showed effective tumor growth inhibition in vivo.This multifunctional nanoplatform offers a promising strategy for modulating the TME and enhancing cancer treatment in clinical application.
基金supported by the National Natural Science Foundation of China (Nos. 22174014 and 22074015)。
文摘Compared with natural enzymes, nanozymes have the advantages of high stability and low cost;however,selectivity and sensitivity are key issues that prevent their further development. In this study, we report a cascade nanozymatic system with significantly improved selectivity and sensitivity that combines more substrate-specific reactions and sensitive fiuorescence detection. Taking detection of ascorbic acid(AA)as an example, a cascade catalytic reaction system consisting of oxidase-like N-doped carbon nanocages(NC) and peroxidase-like copper oxide(Cu O) improved the reaction selectivity in transforming the substrate into the target product by more than 1200 times against the interference of uric acid. The cascade catalytic reaction system was also applicable for transfer from open reactors into a spatially confined microfiuidic device, increasing the slope of the calibration curves by approximately 1000-fold with a linear detection range of 2.5 nmol/L to 100 nmol/L and a low limit of detection of 0.77 nmol/L. This work offers a new strategy that achieves significant improvements in selectivity and sensitivity.
文摘Directed degradation of abundant renewable lignin into small aromatic compounds is crucial for lignin valorization but challenging.The degradation of lignin in natural environments typically involves multienzyme synergy.However,the proteinaceous characteristics of lignin-degrading enzymes restrict their accessibility to certain regions of intricate lignin,resulting in the multienzyme systems being unable to fully demonstrate their effectiveness.Herein,a de novo biomimetic enzyme-nanozyme hybrid system was constructed by combiningλ-MnO_(2) nanozyme with laccase CotA from Bacillus subtilis,aimed at facilitating lignin degradation under mild conditions.The lignin degradation rate of the CotA+λ-MnO_(2) hybrid system was determined to be 25.15%,which was much higher than those of the lignin degradation systems with only laccase CotA(15.32%)orλ-MnO_(2) nanozyme(14.90%).Notably,the proportion of aromatic chemicals in the products derived from the hybrid system reached as much as 48%,which was 41.2%and 118.2%higher than those of the CotA-andλ-MnO_(2)-catalyzed systems,respectively.Analysis of products mapping and lignin structure changes suggested that the higher proportion of aromatic compounds in the CotA+λ-MnO_(2)hybrid system was more likely to benefit from the laccase-mediated methoxylation.Moreover,electron paramagnetic resonance analysis indicated that the intensity and kind of free radicals such as·OH and·O_(2)^(-)are closely linked to the degradation rate and reaction type.This work is the inaugural application of an enzyme-nanozyme hybrid system for lignin degradation,demonstrating the potential of the synergistic interaction between enzyme and nanozyme in the directed degradation of lignin.
基金supported by the National Natural Science Foundation of China(22422604,32472435)the National Key Research and Development Program of China(2021YFD1700300)+1 种基金the Agricultural Science and Technology Innovation Program of CAAS(CAAS-ASTIP-IQSTAP-04)the State Key Laboratory of Analytical Chemistry for Life Science。
文摘As environmental pollutants pose a serious threat to socioeconomic and environmental health,the development of simple,efficient,accurate and costeffective methods for pollution monitoring and control remains a major challenge,but it is an unavoidable issue.In the past decade,the artificial nanozymes have been widely used for environmental pollutant monitoring and control,because of their low cost,high stability,easy mass production,etc.However,the conventional nanozyme technology faces significant challenges in terms of difficulty in regulating the exposed crystal surface,complex composition,low catalytic activity,etc.In contrast,the emerging single-atom nanozymes(SANs)have attracted much attention in the field of environmental monitoring and control,due to their multiple advantages of atomically dispersed active sites,high atom utilization efficiency,tunable coordination environment,etc.To date,the insufficient efforts have been made to comprehensively characterize the applications of SANs in the monitoring and control of environmental pollutants.Building on the recent advances in the field,this review systematically summarizes the main synthesis methods of SANs and highlights their advances in the monitoring and control of environmental pollutants.Finally,we critically evaluate the limitations and challenges of SANs,and provide the insights into their future prospects for the monitoring and control of environmental pollutants.
基金supported by the National Natural Science Foundation of China(32060577 and 32360619)Natural Science Foundation of Jiangxi Province(20224ACB203016 and 20212BAB203034)the Open Project of China Food Flavor and Nutrition Health Innovation Center(CFC2023B-013).
文摘Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.
基金supported by the National Natural Science Foundation of China (3237152 and 22104102)Natural Science Foundation of Sichuan Province (2025ZNSFSC0155)+1 种基金Open Project Program (SKL-KF202416) of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaTwo-Way Support Programs of Sichuan Agricultural University (P202105)
文摘Excessive accumulation of cadmium (Cd) impairs crop growth by inducing oxidative damage through the generation of reactive oxygen species (ROS). In this study, a biocompatible ferruginated carbon quantum dots (Fe-CQDs) nanozyme is developed to target ROS, thereby reducing oxidative damage and improving the absorption and transfer of Cd ions in wheat. Notably, Fe-CQDs exhibit multi-enzyme activities mimicking peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), enabling effective neutralization of active species such as hydroxyl radicals (•OH), hydrogen peroxide (H_(2)O_(2)), and superoxide anions (O_(2)•^(-)). Importantly, root application of 10 mg L^(-1) Fe-CQDs alleviates Cd stress and promotes wheat growth in both hydroponic and soil cultures. Specifically, the levels of O_(2)•^(-), H_(2)O_(2), and malondialdehyde (MDA) in leaf tissues decrease, whereas the non-enzyme antioxidant, reduced glutathione (GSH), increases. Cell wall thickness in the Fe-CQDs-treated group is reduced by 42.4% compared with the Cd group. Moreover, Fe-CQDs enhance the expression of genes related to antioxidants, stress resistance, Cd detoxification, and nutrient transport. Transcriptomic and metabolomic analyses show that Fe-CQDs stimulate the production of flavonoids and regulate the activity of metal transporter genes (YSL, ABC, ZIP) to maintain ROS homeostasis. These findings highlight the potential of Fe-CQDs nanozyme platforms in mitigating oxidative damage and enhancing crop growth, offering new insights into the application of nanobiotechnology in agriculture.
基金supported by the National Natural Science Foundation of China Project(No.22208321)the China Postdoctoral Science Foundation Project(No.2022M720130)+1 种基金the Key Scientific Research Project of Henan Province High Education Institutions(No.24A350018)the Natural Science Foundation of Henan Province-Outstanding Youth Foundation(No.232300421058)。
文摘Wound healing in diabetic patients presents significant challenges due to heightened risks of bacterial infection,elevated glucose levels,and insufficient angiogenesis.Nanozymes are widely employed for wound healing,but most current nanozyme systems exhibit only moderate activity limited by incompatible reaction microenvironments including p H and hydrogen peroxide(H_(2)O_(2))concentration.Herein,a glucoseactivated nanozyme hydrogel was developed using bovine serum albumin(BSA)-modified gold nanoparticles(Au NPs)attached to a two-dimensional(2D)metal-organic framework(MOF)(Cu-TCPP(Fe)@Au@BSA)by an in situ growth method.The Au NPs function as a glucose oxidase(GOx)-like enzyme,converting glucose to gluconic acid and H_(2)O_(2),triggering the peroxidase(POD)-like activity of Cu-TCPP(Fe)to produce hydroxyl radicals(·OH),effectively eliminating bacteria.Additionally,the modification of BSA reduces the Au NP size,enhancing enzyme activity.Both in vitro and in vivo tests demonstrate that this nanozyme hydrogel can be activated by the microenvironment to lower blood glucose,eliminate bacterial infections,and promote epithelial formation and collagen deposition,thus accelerating diabetic wound healing effectively.The multifunctional nanozyme hydrogel dressing developed in this study presents a promising therapeutic approach to enhance diabetic wound healing.
基金financially supported by the Key Research&Development Program of Guangxi(No.GuiKeAB22080088)the Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation(No.2023GXNSFDA026023)+3 种基金the Natural Science Foundation of Guangxi(No.2023JJA140322)the National Natural Science Foundation of China(No.82360372)the High-level Medical Expert Training Program of Guangxi“139 Plan Funding(No.G202003010)the Medical Appropriate Technology Development and Popularization and Application Project of Guangxi(No.S2020099)。
文摘Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.
基金financially supported by the National Natural Science Foundation of China(No.31972149)Innovation Capability Improvement Project of Scientific and Technological Small and Medium-sized Enterprises in Shandong Province(No.2022TSGC2409)the Mac Diarmid Institute for Advanced Materials and Nanotechnology and the Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘In this work,a novel bifunctional zirconium dioxide@zeolitic imidazolate framework-90(ZrO_(2)@ZIF-90)nanozyme was successfully developed for the catalytic degradation and electrochemical detection of methyl parathion(MP).The ZrO_(2)@ZIF-90 nanozyme with phosphatase hydrolysis activity can convert MP into p-nitrophenol(p-NP).The addition of ZrO_(2)riched in Lewis acid Zr(IV)sites significantly enhanced the phosphatase hydrolysis activity of ZIF-90.ZrO_(2)@ZIF-90 also displayed satisfactory electrocatalytic performance on account of the high surface area,high porosity and powerful enrichment ability of the ZIF-90 and the excellent ion transfer capacity of ZrO_(2).A ZrO_(2)@ZIF-90 nanozyme modified glassy carbon electrode(ZrO_(2)@ZIF-90/GCE)was then fabricated to analyze p-NP formed through MP degradation.Under the optimized conditions,the developed sensor displayed satisfactory analytical performance with a low limit of detection of 0.53μmol/L and two wide linear ranges(3-10 and 10-200μmol/L).ZrO_(2)@ZIF-90 nanozyme accomplished to the degradation and electrochemical detection of MP in river water and spiked fruits.This study identifies a promising new strategy for the design of bifunctional nanozymes for the detection of environmental hazards.
文摘Tuning the nanozyme s activity and specificity is very crucial for developing highly sensitive sensors for various applications. Herein, selenium-doped porous N-doped carbon skeletons(Se/NC) nanozymes with highly specific peroxidase-like activity were synthesized by a MOF-pyrolysis-doping protocol. Se doping adjusted the electronic structure of NC by introducing more vacancies, defective carbon and graphitic N,and endowed the resultant Se/NC enhanced charge transfer and substrate affinity. The Se/NC exhibited specific peroxidase-mimicking activity and could catalyze 3,3,5,5-tetramethylbenzidine oxidation by H_(2)O_(2). Density functional theory(DFT) calculations and experimental trials indicated that both Se=O and C–Se–C species were the main active sites of Se/NC. The C–Se–C bond is the main catalytic active site endowing Se/NC with the property of nanozyme, while the Se=O bond effectively enhances its affinity to H_(2)O_(2) and accelerate H2O2dissociation. The Se/NC showed an approximately 185-fold increase in peroxidase-like activity compared to NC. Based on the inhibition of the peroxidase-like activity of Se/NC by methimazole, a colorimetric sensor was developed to achieve its sensitive detection with 2 nmol/L of limit of detection. It was successfully used for detecting methimazole in real samples. Current Se doping strategy simplifies the fabrication process of high performance specific nanozyme and promises great potential for environmental analysis.
基金financially supported by the National Natural Science Foundation of China(No.32172855)Fundamental Research Funds for the Central Universities(Nos.2632024ZD07,2632024TD02)the Open Project of Jiangsu Provincial Science and Technology Resources(Clinical Resources)Coordination Service Platform(No.TC2023B001)。
文摘The presence of the blood–brain barrier limits the drug concentration in the brain,while low concentrations of antibiotics make it difficult to kill infecting bacteria and tends to induce drug resistance,making the clinical treatment of bacterial meningitis challenging.Herein,a nose-to-brain delivery strategy of small-sized nanozyme has been fabricated for combating bacterial meningitis,to overcome the low drug concentration and drug resistance.This strategy was achieved by a proteinsupported Au nanozyme(ANZ).With a particle size of less than 10 nm,it possesses both glucose oxidase-like and peroxidase-like activities and can generate large amounts of reactive oxygen species through a cascade effect without the addition of external H_(2)O_(2).Benefiting from the cascade catalytic amplification effect generated by its dual enzymelike activities,ANZ shows significant broad-spectrum antibacterial activity without inducing bacterial resistance in vitro.Notably,small-sized ANZ exhibits higher brain entry efficiency and greater accumulation after intranasal administration compared to oral or intravenous administration.In a mouse model of bacterial meningitis,the mice treated with ANZ had lower bacterial loads in the brain and higher survival and clinical behavior scores compared to the classical antibiotic ceftriaxone.Additionally,the meningitis mice exhibited undamaged cognitive and behavioral abilities,indicating the excellent biocompatibility of ANZ.The above results demonstrate that nose-to-brain delivery of ANZ exhibits high intracerebral accumulation,strong antibacterial efficacy and does not lead to bacterial resistance.It holds broad prospects for the treatment of bacterial meningitis.
文摘The authors regret to report some missing information in the synthetic reagents and associated changes of the paper.On page 511,the author information reads:“5.0 mmol of citric acid(C_(6)H_(8)O_(7)),5.0 mmol of ferric chloride hexahydrate(FeCl_(3)·6H_(2)O),and 10.0 mmol of o-phenylenediamine(C_(6)H_(8)N_(2))were combined with 40 mL of deionized water and magnetically stirred until fully dissolved.”
基金supported by National Natural Science Foundation of China(Nos.22474124,21575125)the National Natural Science Foundation of Jiangsu Province(No.BK20221370)+4 种基金Key University Natural Science Foundation of Jiangsu-Province(No.20KJA150004)the Project for Science and Technology of Yangzhou(No.YZ2022074)Project for Yangzhou City and Yangzhou University corporation(No.YZ2023204)the Open Research Fund of State Key Laboratory of Analytical Chemistry for Life Science(No.SKLACLS2405)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_3462)。
文摘Although diverse signal-amplified methods have been committed to improve the sensitivity of surface plasmon resonance(SPR)biosensing,introducing convenient and robust signal amplification strategy into SPR biosensing remains challenging.Here,a novel nanozyme-triggered polymerization amplification strategy was proposed for constructing highly sensitive surface plasmon resonance(SPR)immunosensor.In detail,Au@Pd core-shell nanooctahedra nanozyme with superior peroxidase(POD)-like activity was synthesized and utilized as a label probe.Simultaneously,Au@Pd core-shell nanooctahedra nanozyme can catalyze the decomposition of H_(2)O_(2)to form hydroxyl radicals(·OH)that triggers the polymerization of aniline to form polyaniline attaching on the surface of sensor chip,significantly amplifying SPR responses.The sensitivity of SPR immunosensor was enhanced by nanozyme-triggered polymerization amplification strategy.Using human immunoglobulin G(HIgG)as a model,the constructed SPR immunosensor obtains a wide linear range of 0.005–1.0μg/m L with low detection limit of 0.106 ng/m L.This research provides new sights on establishing sensitive SPR immunosensor and may evokes more inspiration for developing signal amplification methods based on nanozyme in biosensing.
基金financial support from the National Natural Science Foundation of China(Nos.82202354,U20A20338,82201247)The Summit Advancement Disciplines of Zhejiang Province(Wenzhou Medical University-Pharmaceutics)the Key R&D Program of Zhejiang Province(No.2021C04019)。
文摘Tumor heterogeneity and diversity significantly undermine the effectiveness of monotherapy.Collaborative therapy emerges as a promising approach to mitigate tumor recurrence resulting from monotherapy.Combining chemodynamic therapy(CDT)with photothermal therapy(PTT)offers a compelling solution for eradicating residual tumor cells post-PTT.In this study,we harness the Fenton-like response facilitated by glucose oxidase(GOD)and the mild hyperthermia induced by polyethyleneimine(PEI)functionalized nitrogen-containing graphene oxide to enhance tumor therapy through a metal-free bionic nanozyme.GOD catalyzes a substantial amount of hydrogen peroxide,and,with the carrier's involvement,triggers a Fenton-like reaction,yielding a wealth of hydroxyl radicals.These hydroxyl radicals effectively target tumor cells following photothermal action,bolstering CDT and culminating in a bidirectional amplification treatment that effectively prevents tumor recurrence and metastasis.This research amalgamates the physical and chemical attributes of nanomaterials with the unique characteristics of the tumor microenvironment,presenting a compelling and efficacious alternative for tumor treatment.
基金supported by the Scientific and Technological Project of Henan Province(232102321117)National Natural Science Foundation of China(82202198)+2 种基金the National Engineering Research Center of Wheat and Corn Further Processing of Henan University of Technology(NL2022010)Project of Basic Research Fund of Henan Provincial Institute of Medical and Pharmacological Sciences(2023BP0106)the Innovative Funds Plan of Henan University of Technology(2020ZKCJ23)。
文摘Aflatoxin B1(AFB1)is a carcinogenic toxin naturally produced in most food crops that severely threaten human health,and effective methods are urgent to improve the detection accuracy.Herein an indirect competitive immunosorbent approach was elaborately developed based on high-affinity immunoglobulin G(IgG)coupled CuO-anchored Fe_(3)O_(4)nanozymes for precise and ultrasensitive detection of AFB_(1)in food crops including peanut,corn and wheat.The high-affinity nanozymes were fabricated by the assembly of inner core Fe_(3)O_(4)nanoparticles and mesoporous silica capping layer,Cu O further situated within large aperture of the coating layer via in-situ growth,and then conjugated with ligand rabbit anti-mouse Ig G,which can specifically bind with AFB_(1).The results showed the hybrid high-affinity nanozymes displayed enhanced peroxidasemimic activities and catalytic performances,achieving a linear range of 0.06-61.93(lg(ng/mL))and a detection limit of 0.0037 ng/mL,30 times better than that of the conventional enzyme-linked immunosorbent assay.The constructed nanozymes were successfully applied to the detection of AFB_(1)in food products with an average spiked recovery of 96.53%and relative standard deviations less than 2.8%.Therefore,the accurate hybrid nanozymes may serve for AFB_(1)detection in various foods in future.
基金supported by the Science and Technology Research Project from Education Department of Jilin Province (No. JJKH20231296KJ)the Natural Science Foundation of Science and Technology Department of Jilin Province (Joint Fund Project) (No. YDZJ202201ZYTS340)+9 种基金the Fundamental Research Funds for the Central Universities (No. 2412022ZD013)the Science and Technology Development Plan Project of Jilin Province (Nos. SKL202302030, SKL202402017, 20210204126YY, 20230204113YY, 20240602003RC, 20210402059GH)the National Natural Science Foundation of China (Nos. 22174137, 22322410, 92372102 and 22073094)the Cooperation Funding of Changchun with Chinese Academy of Sciences (No. 22SH13)the Capital Construction Fund Projects within the Budget of Jilin Province (No. 2023C042–5)the University Level Scientific Research Projects of Ordinary Universities in Xinjiang Uygur Autonomous Region (No. 2022YQSN002)the State Key Laboratory of Molecular Engineering of Polymers (Fudan University) (No. K2024–11)the Program for Young Scholars in Regional Development of CASthe essential support of the Network and Computing Center, CIAC, CASthe Computing Center of Jilin Province。
文摘Recent advancements in nanotechnology have spotlighted the catalytic potential of nanozymes, particularly single-atom nanozymes(SANs), which are pivotal for innovations in biosensing and medical diagnostics. Among others, DNA stands out as an ideal biological regulator. Its inherent programmability and interaction capabilities allow it to significantly modulate nanozyme activity. This study delves into the dynamic interplay between DNA and molybdenum-zinc single-atom nanozymes(Mo-Zn SANs). Using molecular dynamics simulations, we uncover how DNA influences the peroxidase-like activities of Mo-Zn SANs, providing a foundational understanding that broadens the application scope of SANs in biosensing.With these insights as a foundation, we developed and demonstrated a model aptasensor for point-ofcare testing(POCT), utilizing a label-free colorimetric approach that leverages DNA-nanozyme interactions to achieve high-sensitivity detection of lysozyme. Our work elucidates the nuanced control DNA exerts over nanozyme functionality and illustrates the application of this molecular mechanism through a smartphone-assisted biosensing platform. This study not only underscores the practical implications of DNA-regulated Mo-Zn SANs in enhancing biosensing platforms, but also highlights the potential of single-atom nanozyme technology to revolutionize diagnostic tools through its inherent versatility and sensitivity.
基金financial support of Guangdong Basic and Applied Basic Research Foundation(No.2022B1515020095)National Natural Science Foundation of China(No.52073140)。
文摘Deprivation of glucose and lactate provides an effective pathway to terminate the nutrients supplement for tumor growth.In this work,biomimetic nanozymes called m@BGLC are constructed for catalytic tumor inhibition through nutrients deprivation and oxidative damage induction.Concretely,the catalytic enzymes of glucose oxidase(GOx),lactate oxidase(LOx)and chloroperoxidase(CPO)are precrosslinked with bovine serum albumin(BSA)to construct nanozymes,which are then biomimetic functionalized with cancer cell membrane to prepare m@BGLC.Benefiting from the biomimetic camouflage with homologous cell membrane,m@BGLC inherit homotypic binding and immune escape abilities,facilitating the tumor targeting accumulation and preferable cell internalization for improved drug delivery efficiency.Subsequently,under the cascade catalysis of nanozymes,m@BGLC consume glucose and lactate for tumor starvation therapy through nutrients deprivation,and meanwhile,the resulting hyprochloric acid(HClO)causes an oxidative damage of cells to synergistically inhibit tumor growth.In vitro and in vivo findings demonstrate a robust tumor eradication effect of m@BGLC without obvious adverse reactions via the targeted combination therapy.Such cascade catalytic nanomedicine may inspire the development of sophisticated strategies for tumor combination therapy under unfavorable tumor microenvironments.
基金supported by the National Natural Science Foundation of China(Nos.22125606 and 22241604)Chinese Academy of Sciences Project for Young Scientists in Basic Research(No.YSBR-086)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XBD0750000)the Research Start-up Funding Project of Kashi University(No.GCC2024ZK-014)。
文摘Biomimetic nanozymes opens up new opportunities for sensitive,rapid and field detection of organophosphorus pesticides(OPs).However,it still remains challenges in how to improve the sensitivity and stability of biomimetic nanozymes under harsh conditions.Herein,we synthesized a novel biomimetic nanozyme composed of hemin and bovine serum albumin(BSA)in the nanopores of poly-l-lysine methacryloyl(PLMA)inverse opal hydrogel(PLMA-Hemin-BSA).PLMA-Hemin-BSA achieves superior peroxidase-like activity and shows high stability due to the confinement effect.A multi-enzyme cascade reaction was constructed for the colorimetric detection of five widely used OPs by integrating PLMAHemin-BSA with natural choline oxidase and acetylcholinesterase.The detection limits for dichlorvos,chlorpyrifos,paraoxon,methamidophos,and parathion were as low as 0.024,0.073,0.12,0.56,and 1.4 ng/mL,respectively.More importantly,the average recovery rates and the relative standard deviations(RSD)of chlorpyrifos in paddy water,soil and wheat samples were 86.62%-100.13%and 2.08%-8.65%,which meet the standard of the International Union of Pure and Applied Chemistry(IUPAC,recoveries of 70%-120%with RSD<20%).This study represented advanced methods toward enhancing the activity and stability of biomimetic nanozymes via spatial nanopores-assisted strategy.
基金the National Natural Science Foundation of China(No.52372264,32271609,52073071,51703043)the Natural Science Foundation of Heilongjiang Province of China(No.LH2023B002).
文摘Nanozymes,as a new generation of artificial enzymes,exhibit similar chemical properties,catalytic efficiency,and reaction kinetics to natural enzymes.Nanozymes can offer several advantages over natural enzymes,including the decreased cost,the increased stability,and the enhanced catalytic activity.These advantages have positioned nanozymes as a research focus in the fields of chemistry,materials and biomedicine.Polyoxometalates(POMs)and their composites have been found to possess excellent catalytic capabilities as peroxidase mimics.Given this,this review aims to provide a comprehensive overview of the POM-based nanozymes,covering their structural categorization,evolution,and various applications over the past decade.The dynamic nature of this field would promise the intriguing challenges and opportunities in the future.Additionally,we address the existing issues with the POM-based peroxidase-like enzymes and suggest the potential directions for future research.This review would serve as a valuable resource for researchers seeking to develop the improved therapeutic and diagnostic technologies using the POM-based nanozymes,thereby advancing the fields of biochemistry and materials science.