期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
1
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites Mechanical properties Thermal properties Mechanical stirrer Sonication
在线阅读 下载PDF
Exciton dynamics and random lasing in surface-passivated CdSe/CdSeS core/crown nanoplatelets
2
作者 Huan Liu Puning Wang Rui Chen 《Chinese Physics B》 2025年第9期179-184,共6页
CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significa... CdSe nanoplatelets(NPLs)are promising candidates for on-chip light sources,yet their performance is hindered by surface defects and inefficient optical gain.Herein,we demonstrate that CdSeS crown passivation significantly enhances the photophysical property of CdSe NPLs.Laser spectroscopy techniques reveal suppressed electronic and hole trapping at lateral surfaces,leading to a 4.2-fold increase in photoluminescence quantum yield and a shortened emission lifetime from13.5 to 4.8 ns.In addition,amplified spontaneous emission is achieved under nanosecond pulse pumping,with thresholds of0.75 to 0.16 mJ/cm^(2)for CdSe and CdSe/CdSeS NPLs,respectively.By integrating CdSe/CdSeS NPLs with high-refractiveindex SiO2scatters,coherent random lasing is realized at a threshold of 0.21 mJ/cm^(2).These findings highlight the critical role of lateral surface passivation in optimizing optical gain and pave the way for low-cost,multifunctional nanophotonic devices. 展开更多
关键词 CdSe nanoplatelets core/crown heterostructures surface passivation amplified spontaneous emission random lasing
原文传递
Advanced Poly(Lactic Acid)/Thermoplastic Polyurethane Blend-Based Nanocomposites with Carbon Nanotubes and Graphene Nanoplatelets for Shape Memory
3
作者 Nayara Koba de Moura Morgado Guilherme Ferreira de Melo Morgado +1 位作者 Erick Gabriel Ribeiro dos Anjos Fabio Roberto Passador 《Journal of Polymer Materials》 2025年第1期95-110,共16页
The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved ... The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use. 展开更多
关键词 Shape memory polymers poly(lactic acid)(PLA) thermoplastic polyurethane(TPU) carbon nanotubes(CNT) graphene nanoplatelets(GN)
在线阅读 下载PDF
Simultaneously improving the strength and ductility of AZ91/GNPs composites through decorating graphene nanoplatelets with MgO 被引量:1
4
作者 Pingbo Wang Jun Shen +3 位作者 Tijun Chen Jiqiang Ma Qinglin Li Shaokai Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第16期133-151,共19页
Magnesium matrix composites(MgMCs)have always suffered low strengthening efficiency and poor ductility due to the difficulties in pursuing the well-bonded interface.Herein,graphene nanoplatelets(GNPs)were decorated wi... Magnesium matrix composites(MgMCs)have always suffered low strengthening efficiency and poor ductility due to the difficulties in pursuing the well-bonded interface.Herein,graphene nanoplatelets(GNPs)were decorated with magnesium oxide nanoparticles(MgO NPs)through chemical co-precipitation and then incorporated into AZ91 alloy to fabricate MgMCs via powder thixoforging.The effect of MgO on the interface of the Mg/graphene system was investigated based on the first-principles calculations,and the result indicated that modifying GNPs with MgO NPs was helpful in improving the Mg-GNP interface bonding.The interface structural analysis revealed that the MgO NPs were firmly bonded with both GNPs andα-Mg through the distortion area bonding and semi-coherent interfacial bonding,severing as a bridge to fasten the interface bonding of composites.In addition,the MgO NPs on GNPs acted as a barrier to prevent GNPs from seriously reacting with the AZ91 alloy.As a result,the AZ91/MgO@GNPs composite was endowed with enhancements of 31%and 10%in the yield strength,and increments of 71%and 61%in elongation compared with the AZ91 alloy and AZ91/GNPs composite,respectively,exhibiting a more significant potential in optimizing the strength-toughness tradeoffcompared with the AZ91/GNPs.Moreover,the possible strengthening and toughening mechanisms were also discussed in detail.This work offers a relatively novel surface modification strategy to modulate the Mg-GNP interface for a simultane-ous improvement of strength and ductility. 展开更多
关键词 Graphene nanoplatelets Magnesium oxide First-principles calculations Magnesium matrix composites Powder thixoforging
原文传递
The multi-impurity system in CdSe nanoplatelets:electronic structure and thermodynamic properties
5
作者 D A Baghdasaryan V A Harutynyan +1 位作者 E M Kazaryan H A Sarkisyan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第3期165-173,共9页
This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical,electrical,and statistical properties of CdSe nanoplatelets(NPLs).An image charge-based m... This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical,electrical,and statistical properties of CdSe nanoplatelets(NPLs).An image charge-based model of electron-impurity interaction is proposed.The charge-carrier energy spectra and corresponding wave functions depending on the impurity number and configuration are calculated.The electron binding energies are calculated for different NPL thicknesses.It is shown that the image charge-based interaction potential that arises due to the dielectric constants mismatch is much stronger than the interaction potential that does not take such a mismatch into account.Also,it is demonstrated that the binding energies are increasing with the number of impurities.We calculate the canonical partition function using the energy levels of the electron,which in turn is used to obtain the mean energy,heat capacity,and entropy of the non-interacting electron gas.The thermodynamic properties of the non-interacting electron gas that depend on the geometric parameters of the NPL,impurity number,configuration,and temperature are studied. 展开更多
关键词 nanoplateletes thermodynamic properties impurity states
原文传递
Effect of graphene nanoplatelets(GNPs)addition on strength and ductility of magnesium-titanium alloys 被引量:10
6
作者 Muhammad Rashad Fusheng Pan +6 位作者 Aitao Tang Yun Lu Muhammad Asif Shahid Hussain Jia She Jun Gou Jianjun Mao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第3期242-248,共7页
Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder ... Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder metallurgy method followed by hot extrusion.Microstructural characterization results revealed the uniform distribution of reinforcement(Ti+GNPs)particles in the matrix,therefore(Ti+GNPs)particles act as an effective reinforcing filler to prevent the deformation.Room temperature tensile results showed that the addition of Ti+GNPs to monolithic Mg lead to increase in 0.2%yield strength(0.2%YS),ultimate tensile strength(UTS),and failure strain.Scanning Electron Microscopy(SEM),Energy-Dispersive X-ray Spectroscopy(EDS)and X-Ray Diffraction(XRD)were used to investigate the surface morphology,elemental dispersion and phase analysis,respectively. 展开更多
关键词 MAGNESIUM Titanium Graphene nanoplatelets Alloy Composite materials Powder metallurgy Mechanical properties
在线阅读 下载PDF
Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets 被引量:6
7
作者 Bei-Ying Zhou Sheng-Jie Fan +4 位作者 Yu-Chi Fan Qi Zheng Xin Zhang Wan Jiang Lian-Jun Wang 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期513-528,共16页
Graphene nanoplatelets(GNPs)are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties.In addition,their impressive electrical ... Graphene nanoplatelets(GNPs)are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties.In addition,their impressive electrical and thermal properties make them attractive fillers for producing multifunctional ceramics with a wide range of applications.This paper reviews the current status of the research and development of graphene-reinforced ceramic matrix composite(CMC)materials.Firstly,we focused on the processing methods for effective dispersion of GNPs throughout ceramic matrices and the reduction of the porosity of CMC products.Then,the microstructure and mechanical properties are provided,together with an emphasis on the possible toughening mechanisms that may operate.Additionally,the unique functional properties endowed by GNPs,such as enhanced electrical/thermal conductivity,are discussed,with a comprehensive comparison in different ceramic matrices as oxide and nonoxide composites.Finally,the prospects and problems needed to be solved in GNPs-reinforced CMCs are discussed. 展开更多
关键词 Graphene nanoplatelets Ceramic matrix composites Processing methods Mechanical properties Functional properties
原文传递
Surfactant-decorated graphite nanoplatelets(GNPs) reinforced aluminum nanocomposites: sintering effects on hardness and wear 被引量:5
8
作者 Zeeshan Baig Othman Mamat +3 位作者 Mazli Mustapha Asad Mumtaz Sadaqat Ali Mansoor Sarfraz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期704-715,共12页
The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was address... The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures. 展开更多
关键词 graphite nanoplatelets (GNPs) aluminum nanocomposites SURFACTANT HARDNESS dispersion ultra-soincation sintering effects
在线阅读 下载PDF
Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering 被引量:5
9
作者 Hui-min Xia Lan Zhang +4 位作者 Yong-chao Zhu Na Li Yu-qi Sun Ji-dong Zhang Hui-zhong Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1295-1300,共6页
A 0.3wt%graphene nanoplatelets(GNPs)reinforced 7075 aluminum alloy matrix(7075 Al)composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated.The microstructures of the in... A 0.3wt%graphene nanoplatelets(GNPs)reinforced 7075 aluminum alloy matrix(7075 Al)composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated.The microstructures of the internal structure,the friction surface,and the wear debris were characterized by scanning electron microscopy,X-ray diffraction,and Raman spectroscopy.Compared with the original 7075 aluminum alloy,the hardness and elastic modulus of the 7075 Al/GNPs composite were found to have increased by 29%and 36%,respectively.The results of tribological experiments indicated that the composite also exhibited a lower wear rate than the original 7075 aluminum alloy. 展开更多
关键词 7075 aluminum alloy graphene nanoplatelets spark plasma sintering STRENGTH wear resistance
在线阅读 下载PDF
Edge sulfurized graphene nanoplatelets via vacuum mechano-chemical reaction for lithium–sulfur batteries 被引量:1
10
作者 Longlong Yan Min Xiao +2 位作者 Shuanjin Wang Dongmei Han Yuezhong Meng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期522-529,共8页
Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffu... Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area. 展开更多
关键词 Lithium sulfur batteries Graphene nanoplatelets Edge-functionalized with sulfur 3D porous foam structure Mechano-chemical interaction
在线阅读 下载PDF
Fabrication of graphene nanoplatelets reinforced Mg matrix composites via powder thixoforging 被引量:1
11
作者 Pingbo Wang Jun Shen +3 位作者 Tijun Chen Qinglin Li Xiao’an Yue Lingyun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3113-3132,共20页
A powder thixoforging route combined with slurry based mixing process was proposed to fabricate graphene nanoplatelets(GNPs) reinforced magnesium matrix composites(MgMCs). The originally spherical and ball-milled ZK60... A powder thixoforging route combined with slurry based mixing process was proposed to fabricate graphene nanoplatelets(GNPs) reinforced magnesium matrix composites(MgMCs). The originally spherical and ball-milled ZK60 powders were used as matrices, respectively.The mixing of 0.05 wt.% GNPs with the spherical powder led to GNPs clusters and degraded the mechanical properties of the composite.In contrast, with the addition of an optimal content(0.1 wt.%) of GNPs, the composite fabricated from ball-milled powder achieved a joint enhancement in tensile yield strength(52%) and fracture toughness(19%), demonstrating a pronounced strengthening efficiency of 650% and a good balance between strength and toughness. The ball-milled powder endowed the composite with a homogenous distribution of GNPs and a denser microstructure with reduced Mg-Zn eutectics, and the thixoforging process offered a well-bonded Mg/GNP interface, making full use of the strengthening and toughening potential of GNPs. Theoretical predication based on a modified shear-lag model suggested that load transfer dominated the strengthening mechanisms. In-situ tensile tests verified that crack deflection, secondary cracks and GNPs bridging mainly accounted for the toughening mechanisms. A numerical model with consideration of GNPs orientations was also established to understand the toughening effect from GNPs bridging. 展开更多
关键词 Graphene nanoplatelets(GNPS) MAGNESIUM Powder thixoforging Strengthening TOUGHENING
在线阅读 下载PDF
Curing Kinetics, Mechanical Properties and Thermal Stability of Epoxy/Graphene Nanoplatelets(GNPs) Powder Coatings 被引量:4
12
作者 智茂永 黄婉霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1155-1161,共7页
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b... Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability. 展开更多
关键词 epoxy powder coating graphene nanoplatelets(GNPs) toughening mechanism thermal stability
原文传递
Effect of Graphene Nanoplatelets Presence on the Thermal and Mechanical Properties of Polypropylene Fibers Produced by Melt Spinning 被引量:2
13
作者 Ricardo Rodrigo Ramos Cecci Adriano Alves Passos +3 位作者 Nathan Riany Valério Albino Daniel da Silva Vicente Ademir Severino Duarte Maria Inês Bruno Tavares 《材料科学与工程(中英文B版)》 2020年第2期53-63,共11页
In aiming to obtain fibers with enhanced thermal and mechanical properties,graphene based textile fibers with 144 filaments were developed using an approach in which the PP/GnP(polypropylene/graphene nanoplatelets)nan... In aiming to obtain fibers with enhanced thermal and mechanical properties,graphene based textile fibers with 144 filaments were developed using an approach in which the PP/GnP(polypropylene/graphene nanoplatelets)nanocomposite was employed as conductive material in a fiber with circular cross-section geometry.The kinetics of thermal degradation was evaluated by the Broido method using thermogravimetric analysis(TGA).Activation energy was enhanced from 260.6 kJ·mol^-1 to 337.4 kJ·mol^-1 compared to the neat PP.GnP increased the thermal stability of the PP,slowing its degradation by thermal depolymerization.Furthermore,the degree of crystallization declined as the GnP content increased,reducing the tenacity of the yarn,but improving its elastic modulus from 91.9 to 95.9 cN/tex,being a promising alternative to produce smart textiles.In conclusion,it has been confirmed that GnP loading up to 1%(w/w)can be incorporated into polypropylene by melt spinning and that the resulting nanocomposite fibers are suitable for several applications in the textile industry. 展开更多
关键词 Polymer fibers POLYPROPYLENE graphene nanoplatelets degradation kinetics
在线阅读 下载PDF
Structure and Mechanical Properties of Waterborne Polyurethane-based Composites Filled with Self-assembled Supramolecular Nanoplatelets
14
作者 张芳 范红蕾 +2 位作者 HUANG Jin 苏忠民 HE Lihong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期773-780,共8页
New composites of waterborne polyurethane (WPU) as a matrix were prepared by incorporating rigid supramolecular nanoplatelets (SNs) as filler, which were self-assembled by the selective inclusion of β-cyclodextr... New composites of waterborne polyurethane (WPU) as a matrix were prepared by incorporating rigid supramolecular nanoplatelets (SNs) as filler, which were self-assembled by the selective inclusion of β-cyclodextrin (β-CD) onto poly(propylene oxide) (PPO) segment in the poly(ethylene oxide)- block-PPO-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO). It is worth noting that, when the loading level of SN is lower than 3wt%, the SNs with moderate PEO length result in the simultaneous increase in strength, elongation and Young's modulus in contrast with neat WPU. If there is no stretching free PEO chain, both strength and elongation decrease in spite of an increase in Young's modulus. However, too long PEO chains result in the decrease of mechanical performances while the relatively higher loading-level of SNs also inhibits the enhancement of strength and elongation. 展开更多
关键词 waterborne polyurethane supramolecular nanoplatelets POLYROTAXANE cyclodextrin inclusion COMPOSITES mechanical properties
原文传递
Scalable preparation of functionalized graphite nanoplatelets via magnetic grinding as lubricity-enhanced additive
15
作者 季海滨 何志伟 +1 位作者 宋沙沙 赵增典 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2800-2808,共9页
Graphite nanoplatelets were prepared by a novel magnetic-grinding method using self-made equipments. Under a variant magnetic field, magnetic needles collided at a high rotating speed and exfoliated pristine graphite ... Graphite nanoplatelets were prepared by a novel magnetic-grinding method using self-made equipments. Under a variant magnetic field, magnetic needles collided at a high rotating speed and exfoliated pristine graphite into graphite nanoplatelets with high efficiency. The obtained graphite nanoplatelets are highly crystalline, and the thickness is less than 10 nm. Moreover, the surface area could reached 738.1 m^2/g with a grinding time of 4 h. Silanized graphite nanoplatelets can disperse well in SG 15W-40 engine oil and serve as lubricant additive. Tribological results indicate that the friction coefficient and wear-scar of the friction pairs are lower than 76% and 41%, respectively, by adding 1.5‰(mass fraction) of silanized graphite nanoplatelets. Notably, the functionalized graphite nanoplatelets can realize large-scale production and commercial application. 展开更多
关键词 magnetic grinding graphite nanoplatelets SILANIZATION lubricant additives
在线阅读 下载PDF
Mild-temperature Synthesis of Covellite Copper Sulfide Hexagonal Nanoplatelets via the Hydrothermal Route
16
作者 丁同勇 郭国聪 +3 位作者 王明盛 陈其湧 周薇薇 黄锦顺 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第1期19-24,共6页
Covellite CuS hexagonal nanoplatelets were prepared by a simple hydrothermal process at mild temperature, using sodium dodecyl benzene sulfonate (SDBS) as an assisting reagent. The products were characterized by X-r... Covellite CuS hexagonal nanoplatelets were prepared by a simple hydrothermal process at mild temperature, using sodium dodecyl benzene sulfonate (SDBS) as an assisting reagent. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. An energy-dispersive X-ray spectrometer (EDS) was used to analyze the elementary compositions of the intermediate products. A possible formation mechanism of hexagonal nanoplatelets is discussed, using TEM observations. 展开更多
关键词 hydrothermal route copper sulfide hexagonal nanoplatelets assisting reagent
在线阅读 下载PDF
Graphite Nanoplatelets Composite Materials: Role of the Epoxy-System in the Thermal Conductivity
17
作者 Lurayni Diaz-Chacon Renaud Metz +5 位作者 Philippe Dieudonné Jean Louis Bantignies Said Tahir Mehrdad Hassanzadeh Eleida Sosa Reinaldo Atencio 《Journal of Materials Science and Chemical Engineering》 2015年第5期75-87,共13页
Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. In this research, epoxy nanocomposites with e... Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. In this research, epoxy nanocomposites with exfoliated graphite nanoplatelets are prepared and characterized. The chosen approach requires no surface treatment and no sophisticated equipments allowing one to produce composites on a pilot scale. A significant increase of the thermal conductivity with the increasing of the graphite fillers content is nevertheless observed on 4 mm thick specimens. Our results viewed in the latest scientific findings suggest that the choice of resin is an important parameter to move towards composite materials with high thermal conductivity. 展开更多
关键词 Composite Epoxy-GnP Thermal CONDUCTIVITY GRAPHITE nanoplatelets EXFOLIATED GRAPHITE
在线阅读 下载PDF
High-Density Polyethylene Based on Exfoliated Graphite Nanoplatelets/Nano-Magnesium Oxide: An Investigation of Thermal Properties and Morphology
18
作者 A. I. Alateyah 《Materials Sciences and Applications》 2019年第3期159-169,共11页
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T... In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers. 展开更多
关键词 HIGH-DENSITY POLYETHYLENE EXFOLIATED GRAPHITE nanoplatelets Magnesium Oxide Nanoparticles TGA XRD SEM
在线阅读 下载PDF
Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets
19
作者 Li-Bo Fang Wei Pan +1 位作者 Si-Hua Zhong Wen-Zhong Shen 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第9期112-116,共5页
We present a comprehensive understanding of the nonHneer absorption characteristics of CdSe- based nanoplatelets (NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach thr... We present a comprehensive understanding of the nonHneer absorption characteristics of CdSe- based nanoplatelets (NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach through Z- scan techniques at 532nm with picosecond pulses. The CdSe NPLs exhibit strong two-photon induced free carrier absorption (effective three-photon absorption) upon the nonresonant excitation, resulting in a remarkable optical limiting behavior with the limiting threshold of approximately 75 GW/cm2. A nonlinear optical switching from saturable absorption (SA) to reverse saturable absorption (RSA) with increasing the laser intensity is observed when coating CdSe NPLs with a monolayer of CdS shell to realize the resonant absorption. The SA behavior originates from the ground state bleaching and the RSA behavior is attributed to the free carrier absorption. These findings explicitly demonstrate the potential applications of CdSe-based NPLs in nonlinear optoelectronics such as optical limiting devices, optical pulse compressors and optical switching devices. 展开更多
关键词 Nonresonant and Resonant Nonlinear Absorption of CdSe-Based nanoplatelets
原文传递
Development of Cu-Exfoliated Graphite Nanoplatelets (xGnP) Metal Matrix Composite by Powder Metallurgy Route
20
作者 Syed Nasimul Alam Lailesh Kumar Nidhi Sharma 《Graphene》 2015年第4期91-111,共21页
In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based m... In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP. 展开更多
关键词 Powder METALLURGY EXFOLIATED GRAPHITE nanoplatelets (xGnP) Cu-Based Metal Matrix Composite SLIDING Wear
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部